arXiv:2505.12185v4 [cs.SE] 1 Oct 2025

EVALOOOP: A Self-Consistency-Centered Framework
for Assessing Large Language Model Robustness in
Programming

8 8 8

Sen Fang Weiyuan Ding Bowen Xu

NC State Universityg

{sfang9, wding8, bxu22}@ncsu.edu

Abstract

Evaluating the programming robustness of large language models (LLMs) is
paramount for ensuring their reliability in Al-based software development. How-
ever, adversarial attacks exhibit fundamental limitations that compromise fair
robustness assessment: they demonstrate contradictory evaluation outcomes where
different attack strategies tend to favor different models, and more critically, they
operate solely through external perturbations, failing to capture the intrinsic stability
essential for autonomous coding agents where subsequent inputs are endogenously
generated by the model itself. We introduce EVALOOOP, a novel assessment frame-
work that evaluates robustness from a self-consistency perspective, leveraging
the natural duality inherent in software engineering tasks (e.g., code generation
and code summarization). EVALOOOP establishes a self-contained feedback loop
where an LLM iteratively transforms between code and natural language until
functional failure occurs, with robustness quantified by a novel Average Sustain-
able Loops (ASL) metric—the mean number of iterations maintaining functional
correctness across benchmark tasks. This cyclical strategy intrinsically evaluates
robustness without relying on external attack configurations, providing a unified
metric that reveals how effectively LLMs preserve semantic integrity through sus-
tained self-referential transformations. We evaluate 96 popular LLMs, ranging
from 0.5B to 685B parameters, on EVALOOOP equipped with the MBPP Plus
benchmark, and found that EVALOOOP typically induces a 2.65%—47.62% abso-
lute drop in pass@ 1 accuracy within ten loops. Intriguingly, robustness does not
always align with initial performance (i.e., one-time query); for instance, Qwen3-
235B-A22B-Instruct-2507, despite inferior initial code generation compared to
OpenAT’s o-series models and DeepSeek-V3, demonstrated the superior robustness
(ASL score). EVALOOOP reveals distinct degradation patterns across different
models, providing developers with a practical framework for evaluating LLM
functional coherence through iterative transformations and offering complementary
insights that support more informed model selection decisions.

1 Introduction

Robustness is a critical aspect for measuring the performance of Large Language Models (LLMs) in
code generation [[L1} 38,133} 28, [1, 26]. The reasons are threefold. First, real-world consequences
of non-robust code generation can be severe: Research demonstrates that 11.56% of websites
using LLM-generated PHP code could be compromised, with 26% having at least one exploitable

Preprint. Under review.

https://arxiv.org/abs/2505.12185v4

vulnerability [15]], while Meta’s CyberSecEval studies reveal that approximately one in three Al-
generated code pieces contain vulnerabilities [10} 9} 42]. Production incidents have included SQL
injection vulnerabilities from string concatenation patterns, exposure of hard-coded API keys, and OS
command injection flaws introduced through Al-suggested code [31}/48]]. Second, modern software
development increasingly relies on LLM-powered tools: Studies show that LLM-generated code
has become integral to contemporary development workflows, with developers increasingly accepting
Al-assisted code suggestions despite inherent security risks [29} |37, [21]. Third, the shift toward
agent-based software engineering means that LL.Ms must maintain consistency across multiple
interconnected tasks, where cascading inconsistencies can propagate through entire systems, turning
minor semantic drift into complete workflow failures.

Evaluating the robustness of LLMs in programming often involves adversarial attacks [4} 43} 20} 32,
121 152,191 1450151} [8]. However, we find that existing works on evaluating LLM robustness are often
biased due to their reliance on different adversarial attack strategies. For example, when we apply
three adversarial attacks [39]], i.e., Case Transformation, Structural Reformatting, and Redundant
Elaboration, to evaluate the robustness of deepseek-coder-7b-instruct-v1.5 and Qwen2.5-Coder- 32B-
Instruct, we observe completely contradictory robustness patterns: deepseek-coder-7b-instruct-v1.5
demonstrates severe vulnerability to structural attacks (performance drops from 64.6% to 1.1%) while
maintaining robustness under verbose prompt attacks, whereas Qwen2.5-Coder-32B-Instruct shows
the opposite behavior—resilience to structural changes but significant degradation under verbose
prompts (76.2% to 54.5%). As a result, both model developers and consumers could be easily misled
depending on which attack methodology is employed for evaluation.

From the software engineering workflow perspective, agent-based frameworks represent the trending
solution for complex programming tasks [53) [13| [46]. In these frameworks, one task’s output
frequently serves as another task’s input, with each task handled by an LLM agent operating in
sequence or parallel configurations. Notably, these agent systems typically employ post-trained
LLMs that have undergone reinforcement learning [36} 40] or instruction-based fine-tuning [35]
16] to enhance their reliability and instruction-following capabilities. However, our empirical
analysis reveals that such post-trained models demonstrate significant resilience to adversarial
attacks, rendering traditional adversarial evaluation approaches largely ineffective for assessing their
robustness. This creates a critical evaluation limitation: while adversarial attacks fail to meaningfully
stress-test these resilient models, agent deployments require assessing a fundamentally different
dimension of robustness—the model’s ability to maintain functional coherence through sustained
self-referential transformations where subsequent inputs are endogenously generated by the model
itself rather than provided by external adversaries. These gaps underscores the urgent need for a
unified approach for LLMs robustness evaluation in programming that does not depend on
external attack configurations.

Our solution. Inspired by cognitive resilience principles in human learning, we introduce EVALOOOP,
a novel framework for evaluating LLM robustness in programming that addresses these fundamental
limitations. Drawing from the Levels of Processing theory [14], deep cognitive engagement—such
as achieving bilingual fluency or mastering complex dual relationships—builds robust knowledge
structures that are inherently resistant to minor perturbations. Modern LLMs, having been trained on
vast code corpus, demonstrably acquiring sophisticated coding capabilities and constructed resilient
knowledge representations that should theoretically withstand iterative transformations.

Specifically, EVALOOOP practices this principle by leveraging the natural duality [44] between
complementary software engineering tasks (e.g., code generation [24] and code summarization [2]))
to create a self-contained feedback loop. Take the popular dual tasks, code generation and code
summarization, as an example, starting from an initial natural language specification, the framework
instructs an LLM to generate corresponding code, then tasks the same model with summarizing
this generated code back into a new natural language specification. This cyclical process continues
iteratively until the generated code fails to pass functional correctness tests, with robustness quantified
by our proposed Average Sustainable Loops (ASL) metric—the mean number of successful iterations
before functional failure occurs. EVALOOOP essentially constitutes a minimal agent-based system
where each loop represents an autonomous agent interaction. Higher ASL scores indicate superior
self-consistency, suggesting that the LLM is better suited as a foundation model for complex agent-
based software systems. More crucially, EVALOOOP eliminates all external perturbations—beyond
the initial input, all subsequent inputs are endogenously generated by the model itself—thereby

providing a fair, unbiased comparison framework that captures the intrinsic stability essential for
real-world deployment scenarios.

Listing 1.1: The intial solution generated by 03-mini. sy

Initial prompt: Write a python function to determine whether a given list of numbers forms a full
sequence of consecutive integers without any duplicates.

assert check_Consecutive([1,2,3,4,5]) == True
Solution:

def check_Consecutive (lst):
if not 1st:
return False
s = set(lst)
return max(lst) - min(lst) + 1 == len(lst) and s == set(range(min(lst), max(lst) + 1))

Listing 1.2: The solution generated by 03-mini in 5-th loop. '@

Derived prompt: Write a python function to determine if a list of numbers contains an unbroken
sequence of consecutive integers from its minimum to its maximum value.

assert check_Consecutive([1,2,3,4,5]) == True
Solution:
def check_Consecutive (1lst):

if not 1lst:
return False

return set(lst) == set(range(min(lst), max(lst) + 1))

assert check_Consecutive([1,2,3,4,5]) == True

Figure 1: The generated solutions for MBPP™ No. 472 task by 03-mini.

Figure[I]demonstrates EVALOOOP’s effectiveness through OpenAl 03-mini’s performance on MBPP
Plus task No.472. Initially, the model generates a correct solution that properly checks both con-
secutive sequence formation and duplicate absence (Listing [I.T). However, by the 5th loop, de-
spite receiving a semantically equivalent prompt derived from its own previous output, 03-mini
produces a fundamentally flawed implementation (Listing [T.2)) that fails to verify duplicate ab-
sence—erroneously returning True for inputs containing duplicates. This degradation exemplifies the
critical self-consistency failures that adversarial attacks cannot capture. While external perturbations
might leave this model seemingly robust, EVALOOOP reveals how the same LLM loses functional
coherence through endogenous transformations—precisely the type of cascading failures that compro-
mise agent-based systems in practice. Such intrinsic instability, measurable only through sustained
self-referential evaluation, directly impacts the reliability of autonomous coding agents where one
model’s output becomes another’s input across multiple reasoning steps.

Contributions. Our main contributions are:

* Problem Identification and Empirical Evidence: We systematically identify and empirically
validate critical limitations of adversarial attack-based robustness evaluation methods through com-
prehensive experiments across 13 state-of-the-art LLMs. Our findings reveal that these approaches
exhibit negligible effectiveness against modern post-trained models (e.g., OpenAl’s o-series) and
demonstrate inherent evaluation bias where different attack strategies tend to favor different mod-
els, leading to contradictory robustness conclusions that compromise fair comparison and practical
applicability.

* Novel Evaluation Framework (EVALOOOP): We propose EVALOOOP, a self-consistency frame-
work that leverages the natural duality between code generation and code summarization within a
self-contained feedback loop to provide unified and unbiased evaluation. Our proposed Average
Sustainable Loops (ASL) metric quantifies robustness through endogenous transformations, eliminat-
ing dependence on external attack configurations while capturing the intrinsic stability crucial for
agent-based systems.

* Large-scale Empirical Validation and Insights: Through evaluation of 96 LLMs (0.5B-685B
parameters) on MBPP Plus benchmark [27], we reveal that EVALOOOP induces 2.65%-47.62%
absolute performance drops within ten loops, with robustness patterns that diverge from initial
performance rankings. Notably, models like Qwen3-235B-A22B-Instruct-2507 demonstrate superior

Sustained loops

Initial P t
nr = ' def funcf/on(args) ”\‘
; 0

Code Generation Testmg - &2{"
@ =

Semantic consistency

Robustness
T Fail=>> Evaluation @ ASL
Start a new evaluation loop

Pass

= o
Write apython - , oy @ :
program to.. Loop i-1 Loop i-1
Updating Code Summary @

Figure 2: An overview of EVALOOOP implemented by integrating code generation and summarization
loop.

robustness despite inferior initial capabilities compared to OpenAl’s o-series, suggesting that sustained
self-consistency may indicate deeper comprehension rather than memorization—offering developers
practical guidance for selecting optimal foundation models in iterative, agent-based software systems.
To our knowledge, this represents the first comprehensive unified assessment of LLM programming
robustness at this scale, encompassing nearly 10 times more models than prior relevant studies and
providing the research community with a reliable robustness ranking across the majority of modern
LLMs.

* Framework Extensibility through Code Translation: We demonstrate EVALOOOP’s general-
ization by extending it to code translation tasks, establishing dual transformation loops between
different programming languages. This extension support our framework’s general applicability
beyond generation-summarization pairs, showcasing its potential for evaluating robustness across
diverse software engineering scenarios and proving its easily extensible nature for various dual-task
configurations.

* Open-Source Leaderboard and Resources: We release a comprehensive online Leaderboard
(Available at: https://evalooop.github.io/) that enables practitioners to interactively explore
model robustness rankings across different ASL metrics, facilitating informed model selection for
automated software engineering workflow.

2 Proposed Framework: EVALOOOP

Figure 2] presents an overview of our novel framework EVALOOOP for evaluating LLM robustness
through self-consistency assessment. The core insight driving our approach is that robust LLMs
should demonstrate consistent semantic understanding when processing complementary software
engineering tasks—such as generating code from natural language specifications and subsequently
summarizing that code back into natural language. Unlike adversarial approaches that rely on
external perturbations, our framework creates endogenous transformations where models iteratively
process their own outputs, revealing intrinsic stability patterns crucial in informed model selection
for automated software engineering workflow. Moreover, this iterative evaluation provides a unified,
bias-free metric for comparing LLM stability across diverse architectures and training paradigms.

2.1 Duality Loop

As illustrated in Figure 2] the evaluation process establishes a cyclical transformation where task
outputs are iteratively converted between complementary representations. The code generation-
summarization pair serves as our exemplar implementation due to its universal applicability and
clear semantic relationship: code generation demands translating abstract requirements into concrete
implementations, while code summarization requires extracting and articulating essential logic
from existing code. However, the core principle of our framework readily extends to other dual task
configurations in software engineering, such as iterative code translation across multiple programming
languages, as we demonstrate in Section [5through a code translation-based extension of EVALOOOP.

https://evalooop.github.io/

Specifically, the evaluation loop operates through the following three key steps: @ Starting with an
initial natural language prompt specifying a programming task, the target LLM generates executable

code that undergoes rigorous testing against predefined test suites. @ Upon successful validation, the
same LLM summarizes its generated code back into natural language, creating a new specification for
the subsequent iteration. This process continues until the generated code fails functional correctness

tests. @ Upon failed validation, we compute the robustness of the given LLM on the programming
task using our proposed Average Sustainable Loops (ASL) metric, which quantifies both loop
sustainability and semantic consistency.

The bidirectional nature of this transformation is crucial—it requires the model to maintain semantic
fidelity across two distinct cognitive tasks. Code generation demands translating abstract requirements
into concrete implementations, while code summarization requires extracting and articulating the
essential logic from existing code. A robust LLM should demonstrate consistency across both
directions, maintaining the core functionality through successive transformations of its own creation
while preserving semantic coherence throughout the iterative evaluation process.

2.2 Proposed Metric: Average Sustainable Loops (ASL)

To quantify LLM robustness through our iterative evaluation framework, we introduce the Average
Sustainable Loops (ASL) metric. Effective robustness assessment requires capturing two critical
dimensions simultaneously: the model’s ability to maintain functional performance across increasing
loop iterations and the semantic consistency preserved between consecutive transformations. As
illustrated in step 3 of Figure |2} our metric must account for both performance degradation patterns
and the quality of semantic preservation throughout the evaluation cycle. Traditional robustness
metrics typically focus on binary success/failure outcomes or simple performance drops, failing to
distinguish between catastrophic failures due to sudden semantic collapse versus gradual degradation
through accumulated drift. Our ASL metric addresses this limitation by incorporating semantic
similarity analysis that reveals whether functional failures result from significant prompt evolution or
sudden robustness breakdown despite minimal semantic changes.

Specifically, we define ASL as a comprehensive measure that incorporates both sustainability duration
and semantic consistency:

Zf\ilnl Xi2 X 8; (1)

MT ’

where M represents the maximum number of evaluation loops, n; denotes the number of tasks that
sustain functionality through exactly ¢ loops, 1" represents the total number of tasks in the benchmark
dataset, and s; represents the average semantic similarity score for tasks failing at loop i. The
quadratic weighting 72 assigns progressively higher importance to sustained performance across
multiple iterations.

ASL =

For semantic similarity computation, consider a task 7 that sustains [loops before failure. We denote
p?. as the natural language prompt used at loop j for code generation, where p! represents the original
task specification and p? for j > 1 represents the code summary generated in the previous loops. The
key insight driving our similarity assignment stems from the observation that, from the perspective
of LLMs: 1) two programs that could pass identical test cases should be regarded as semantically
equivalent; 2) following this principle, the prompts used to generate these functionally correct
programs should also be considered semantically equivalent, as they specify the same requirements.
Therefore, for all successful loops, we assign:

sizl forj <lorl= M. 2)

For the critical failure boundary where the task terminates at loop [< M, we require nuanced
evaluation to distinguish between failure due to significant semantic drift versus sudden robustness
collapse despite minimal prompt changes:

st = Sim(p}, pi™) € [0,1]. 3)

Evaluating semantic similarity at failure boundaries presents significant challenges that standard
embedding-based approaches cannot adequately address. Traditional similarity metrics rely solely
on natural language embeddings, failing to capture the subtle semantic nuances that distinguish
functionally correct specifications from those leading to implementation failures. The core difficulty

lies in requiring comprehensive assessment that considers both the natural language prompt and its
corresponding generated code simultaneously— only through this joint evaluation can we determine
whether failure resulted from prompt ambiguity, semantic drift, or sudden model robustness collapse.

Listing 2.1: Prompt for LLM-based Semantic Similarity Evaluation.

Compare the semantic similarity of these two code generation prompts. Consider both the prompts and
their generated code outputs.

Prompt 1: {prompti}
Generated Code 1: {codel}

Prompt 2: {prompt2}
Generated Code 2: {code2}

Return only a similarity score between O and 1, where:

- 1.0 = semantically equivalent (same intent, requirements, and expected output)
- 0.0 = completely different semantic meaning

- Values between O and 1 represent partial semantic overlap

Score:

To address this challenge, we employ an LLM-based evaluator with task-specific prompts designed
to perform holistic similarity assessment. This approach enables simultaneous consideration of both
prompt semantics and code functionality, providing the nuanced evaluation necessary for distinguish-
ing different failure modes at loop boundaries. The evaluation prompt (shown in Listing [2.T)) instructs
the evaluator to generate similarity scores between O and 1, where higher scores indicate failure
occurred despite minimal semantic drift between consecutive prompts, suggesting sudden robustness
collapse, while lower scores indicate significant semantic divergence at the failure boundary, which
may result from either accumulated drift across multiple loops or sudden misinterpretation.

We compute the overall prompt similarity for each task as the per-loop average:

l
> sl 4)
j=1

Finally, denoting tasks that sustain exactly i loops as m;(1),...,m;(n;), we obtain s; by averaging
over all tasks in this category:

5, =

~| =

1 & Dy ;:1 3%(@
= —N"5 o == =2 5
5= ;Sml(k) - &)

ASL metric comprehensively addresses the two critical considerations identified earlier. First, the
quadratic weighting scheme with loop count 2 recognizes that maintaining functionality through mul-
tiple iterations demonstrates deeper semantic understanding than initial success alone, implementing
a non-linear reward structure where sustained performance across cascading transformations indicates
superior robustness. Second, the semantic similarity component s; provides more precise robustness
assessment by incorporating the quality of semantic preservation throughout the evaluation process,
enabling our metric to account for both the duration of sustained performance and the consistency of
model behavior across transformations.

Compared with adversarial attack-based methods that depend on external perturbation strategies, ASL
operates through endogenous evaluation where robustness differences reflect genuine model capabili-
ties rather than vulnerability to specific attack methodologies. The semantic similarity integration
provides fine-grained analysis of failure modes, enabling developers to distinguish between models
that gradually degrade through semantic drift versus those experiencing sudden robustness collapse.
Furthermore, the continuous scoring scale from sustained loop counts naturally accommodates models
with varying capability levels, providing informative rankings across the entire performance spectrum
rather than binary classifications.

2.3 Novel Advantages of EVALOOOP

We summarize the following key advantages of EVALOOOP:

¢ Compared to adversarial attack-based robustness assessment, EVALOOOP is unbiased. Build-
ing upon the duality loop mechanism, EVALOOOP quantifies robustness by measuring how many

consecutive transformation cycles a model can sustain before functional crash. This iterative as-
sessment addresses the fundamental limitations of adversarial attack-based evaluation: beyond their
diminished effectiveness against post-trained LLMs and inherent bias where different attack strategies
favor different models, adversarial approaches rely on external perturbations and fail to capture the
internal robustness (i.e., self-consistency) of LLMs—a critical capability for deploying models in
complex Al systems where sustained coherence across interactions determines overall reliability.

* EVALOOOP iteratively exposes robustness weakness from the internal of the model. Unlike
many adversarial attacks that rely on externally crafted perturbations, the failing examples in EVAL-
000P are generated by the model itself, providing authentic insights into intrinsic model limitations.
The iterative framework reveals distinct degradation trajectories that vary significantly across models.
Some LLMs demonstrate gradual semantic drift over many loops, while others experience sudden
collapse after a few iterations. These patterns reflect fundamental differences in how models represent
and maintain semantic information across self-referential transformations. This approach captures
degradation emerging from the model’s own processing limitations and internal inconsistencies,
offering a more genuine assessment of model reliability.

The sustained loop approach operates independently of external attack configurations. After the initial
prompt, all subsequent inputs are generated by the model itself, creating a self-contained evaluation
environment. This endogenous design eliminates biases introduced by specific adversarial strategies
and enables fair comparison across different model architectures, as robustness differences reflect
genuine capabilities rather than vulnerability to particular perturbation methods.

* EVALOOOP is easy to implement, enabling widespread adoption with significant practical
impact.

Our comprehensive evaluation demonstrates this scalability through assessment of 96 popular LLMs
spanning from 0.5B to 685B parameters—substantially exceeding the scope of existing robust-
ness evaluation studies. For comparison, recent adversarial attack studies typically evaluate 5-15
models [45] 20], while our framework enables evaluation of 5-10 times more models due to its
straightforward implementation requirements. This broad applicability facilitates systematic robust-
ness analysis across the entire spectrum of contemporary LLMs. To further support practical adoption,
we provide an interactive online Leaderboard (Available at: https://evalooop.github.io/) that
enables practitioners to explore model robustness rankings, facilitating informed model selection for
various deployment scenarios.

* EVALOOOP can be easily extended with critical software engineering tasks.

Beyond the core generation-summarization cycle, we demonstrate how our framework readily
extends to other critical software engineering tasks by integrating different software engineering tasks.
Specifically, we implement and evaluate a code translation-based extension where models iteratively
translate code across multiple programming languages (e.g., Python — PHP — Ruby — JavaScript
— Perl — Python), with each successful translation representing one evaluation loop, as detailed in
Section[5] Our framework’s extensibility also enables integration of other dual task configurations
such as code and pseudocode conversion [34] and natural language specification and pseudocode
transformation [47].

* EVALOOOP offers a customized metric to quantify model robustness accurately.

Since our iterative evaluation framework represents a novel approach to robustness assessment, we
developed the Average Sustainable Loops (ASL) metric specifically tailored to capture the nuanced
robustness patterns revealed through sustained loop evaluation. Unlike traditional binary pass/fail
metrics or simple performance drops, ASL incorporates both loop sustainability duration and semantic
consistency quality, providing model developers with interpretable scores that directly inform model
selection decisions. The metric’s design enables clear differentiation between models exhibiting
gradual degradation versus sudden collapse, guiding developers toward models best suited for their
specific deployment requirements where sustained reliability is paramount.

3 Experimental Setup

3.1 Research Questions

* RQ1 (Reliability of Adversarial Attacks for Robustness Assessment): How reliable are adver-
sarial attacks in assessing the robustness of LLMs in programming?

https://evalooop.github.io/

* RQ2 (Effectiveness of the Proposed Framework): How effectively does EVALOOOP measure
LLM robustness in programming?

* RQ3 (Reliability of the Proposed Framework): How reliable is EVALOOOP to initial prompt
variations and temperature settings?

3.2 Methodology for Answering RQ1

To investigate the effectiveness of adversarial attacks on post-trained LLMs, we employ three
representative attack strategies from a recent work by Sclar et al. [39]. Each attack perturbs the
original prompt from different angles. As illustrated in Listing [3.1] these attacks represent distinct
perturbation categories:

* Case Transformation: Converting the entire prompt to uppercase to test sensitivity to typographic
variations.

* Structural Reformatting: Reorganizing prompt components with explicit labels and formatting to
assess structural dependency.

* Redundant Elaboration: Injecting verbose instructions and explanatory text to evaluate resistance
to information dilution.

We systematically apply these three attack methods to measure performance degradation of LLMs
by comparing pre- and post-attack pass@1 accuracy. This approach allows us to quantify each
model’s vulnerability to different perturbation types while maintaining functional equivalence of the
underlying tasks.

Models and Benchmark We evaluate 13 state-of-the-art LLMs that have undergone substantial
post-training, such as reinforcement learning and instruction-based fine-tuning. Our selection encom-
passes both proprietary closed-source models (e.g., OpenAlI’s o-series) and open-source alternatives
(e.g., Qwen, LLaMA) to ensure comprehensive coverage of contemporary model architectures. For
each model, we report performance change on MBPP Plus benchmark [27]] under each attack type,
providing a quantitative assessment of adversarial robustness across different perturbation strategies.

Listing 3.1: Examples of the three adversarial attacks.

Initial prompt:
Write a function to find the shared elements from the given two lists.

assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))

1. Case Transformation:
WRITE A FUNCTION TO FIND THE SHARED ELEMENTS FROM THE GIVEN TWO LISTS.

assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))

2. Structural Reformatting:
Task: Write a function to find the shared elements from the given two lists.
Test Case:

assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))

3. Redundant Elaboration:
Please implement the following Python function according to the detailed specification provided below.

Function Requirement: Write a function to find the shared elements from the given two lists.
Your implementation must satisfy the following test case:

assert set(similar_elements((3, 4, 5, 6),(5, 7, 4, 10))) == set((4, 5))

Please ensure your function handles all edge cases and follows Python best practices.

3.3 Methodology for Answering RQ2

This investigation aims to validate EVALOOOP’s ability to differentiate robustness levels and reveal
stability patterns that conventional metrics cannot capture. In detial, we evaluate 96 LLMs spanning
parameter scales from 0.5B to 685B, covering the majority of mainstream models currently available,
including both open-source and close-source. Our evaluation employs MBPP Plus [27], an enhanced
version of the original MBPP benchmark [6] that applies rigorous quality filtering to programming

tasks and expands the test case corpus by 35-fold. This enhanced benchmark provides comprehensive
evaluation coverage specifically suited for our robustness assessment framework. To maintain
consistency with the benchmark’s code generation prompts, we design complementary prompts
for the code summarization task, as shown the initial prompt in Listing [3.2] It instruct LLMs to
generate code summaries that follow the same format as the initial generation prompts, ensuring
semantic alignment across the dual-task evaluation loop. We analyze robustness rankings using
our proposed ASL metric to identify LLMs that demonstrate superior self-consistency independent
of initial performance. This includes examining cases where models with relatively lower initial
performance exhibit higher robustness scores, potentially indicating deeper semantic understanding
versus memorization patterns. The comprehensive scale of our evaluation enables robust statistical
analysis of robustness patterns across model families, parameter scales, and training approaches.

Listing 3.2: An example of five variants prompts.

Initial prompt: Use one sentence to summarize the following code and start with write a python
function to:

¢““\n{code}\n***¢

‘“‘\nwrite a python function to\n‘‘¢

Prompt 1 (Generate detailed summarization): Summarize what the following code does in natural lan
guage:
“““\n{code}\n* ‘¢

Provide a brief explanation in 2-3 sentences. Describe what the code does and its basic inputs/outputs,
but avoid technical implementation details and repetitive explanations. Keep it straightforward and con
cise.

Prompt 2 (Case transformation): USE ONE SENTENCE TO SUMMARIZE THE FOLLOWING CODE AND START WITH WRITE
A PYTHON FUNCTION TO:

“““\n{code}\n* ‘¢

¢¢¢\nWRITE A PYTHON FUNCTION TO\n‘°‘‘

Prompt 3 (Structural reformatting): Task: Use one sentence to summarize the following code and start
with write a python function to:
1. Input Code:

“¢““\n{codeX\n* ‘¢
2. Output Format:

¢¢“‘\nwrite a python function to\n‘‘¢

Prompt 4 (Simplify): Summarize this code in one sentence starting with ‘write a python function to’:

“““\n{code}\n* ‘¢

Summary: write a python function to

Prompt 5 (Redundant elaboration): Please analyze the provided Python code below and generate a concise
one-sentence summary. Your response must begin with the exact phrase ‘write a python function to’.
Code to analyze:

¢ ¢ ‘python\n{code}\n¢**
Please provide your summary in the following format:

‘“‘\nwrite a python function to\n‘‘‘

3.4 Methodology for Answering RQ3

To assess the reliability of EVALOOOP under varying experimental conditions, we investigate two crit-
ical factors that could influence ASL measurements: prompt variations and temperature settings. This
analysis ensures our framework provides stable robustness assessments across different deployment
configurations.

Prompt Reliability Analysis We assess the reliability of EVALOOOP to prompt variations by
focusing on the code summarization component, which drives the iterative transformation loops
in our evaluation. Different prompt formulations are applied to every loop iteration to determine
whether observed robustness differences reflect genuine model capabilities rather than prompt-
specific artifacts. As shown in Listing [3.2] we employ five distinct prompt variants: the three
adversarial strategies from Methodology for RQ1 (Case Transformation, Structural Reformatting,
and Redundant Elaboration) plus two additional approaches—generating detailed summarization and
prompt simplification. Unlike RQ1, which examines model vulnerability to these perturbations, RQ3
investigates whether EVALOOOP produces consistent robustness rankings despite input variations
across the summarization phase. A robust evaluation framework should demonstrate minimal ranking

perturbations across semantically equivalent prompts, indicating that observed robustness differences
reflect genuine model capabilities rather than prompt-specific artifacts.

Temperature Reliability Analysis We systematically evaluate ASL score variations across different
sampling temperatures to understand the framework’s behavior under varying generation stochasticity.
We test four additional temperature settings: 0.2, 0.4, 0.6, and 0.8, comparing them against the default
temperature configuration.

In this RQ, we experiment on the same 13 LLMs from RQ1, ensuring consistency with our adversarial
attack comparison while maintaining experimental feasibility. To quantify the consistency of model
rankings across different prompts, we calculate the Spearman rank correlation coefficient between
the baseline rankings and the average prompt and temperature rankings. A high correlation coefficient
generally indicates a strong positive correlation, demonstrating that the relative performance of LLMs
remains highly stable across different prompt variations and temperature settings.

3.5 Greedy Decoding vs. Temperature Sampling

Figure 3] presents the performance distribution of average sustainable loops per task in the MBPP Plus
benchmark across 13 LLMs (same as RQ1 and RQ3) using either greedy decoding or temperature-
controlled stochastic sampling. Our comprehensive evaluation, conducted through five times exper-
imental runs and averaged results, reveals an intriguing finding: both decoding strategies achieve
nearly identical performance, with greedy decoding averaging 6.38 sustainable loops and temper-
ature sampling averaging 6.37 sustainable loops. This convergence in performance is particularly
noteworthy given that temperature sampling is widely adopted as the default decoding mechanism
in many production LLMs (e.g., ChatGPT employs a default temperature of 0.7), primarily valued
for its capacity to introduce variability and enhance human-like expression diversity. However, our
results suggest that in the context of code generation tasks, the stochastic exploration benefits of
temperature sampling do not translate to measurable performance improvements. This might be
becasue code generation inherently demands strict adherence to precise semantic and syntactic rules,
creating a more constrained solution space where the highest-probability tokens selected by greedy
decoding are often optimal. Besides, the deterministic nature of greedy decoding may actually
be advantageous in programming tasks, where consistency and logical coherence are paramount
over linguistic creativity. Given the equivalent performance and the superior reproducibility
afforded by greedy decoding, we adopt greedy decoding as our primary evaluation strategy for
all subsequent experiments.

10

Greedy
g W Temperature

Temperature Avg: 6.37
0

N o

Average Sustainable Loops
N

Problems (Sorted by Greedy Sustainable Loops)

Figure 3: Distribution of average sustainable loops per task in MBPP Plus.

3.6 Implementation

We evaluate proprietary LLMs through their official APIs (OpenAl, Anthropic, etc.) and deploy
open-source LLMs locally using VLLM across eight NVIDIA H200 GPUs. All experiments
use consistent hyperparameters: temperature=0.0 and top-p=1.0 for deterministic generation (greedy
decoding), maximum 1024 tokens for code generation and summarization. Besides, we set the
maximum number of evaluation loop (i.e., M) as 10 and use gpt-4-turbo-2024-04-09 for similarity
evaluator.

10

Table 1: Model performance (in terms of pass@ 1) comparison under adversarial attacks.

Model Original AT Typper ATTstructure AT Tdetail
Codestral-22B-v0.1 0.607 0.648 0.706 0.669
deepseek-coder-7b-instruct-v1.5 0.646 0.291 0.011 0.638
DeepSeek-Coder-V2-Lite-Instruct 0.713 0.722 0.722 0.704
DeepSeek-Coder-V2-Instruct 0.769 0.767 0.765 0.773
Llama-3.1-8B-Instruct 0.586 0.468 0.458 0.360
OpenCoder-8B-Instruct 0.703 0.683 0.698 0.693
CodeQwen1.5-7B-Chat 0.698 0.704 0.698 0.706
Qwen2.5-Coder-32B-Instruct 0.762 0.759 0.751 0.545
Qwen3-235B-A22B-Instruct-2507 0.789 0.796 0.791 0.788
GPT-4.1 0.767 0.775 0.775 0.743
GPT-40 0.767 0.754 0.767 0.759
03-mini 0.815 0.804 0.807 0.818
04-mini 0.818 0.818 0.810 0.794
4 Results

4.1 Answer to RQ1: Adversarial Attack Limitations

Table [1| presents the comparative analysis of model performance under three adversarial attack
methods against baseline performance on MBPP Plus. We evaluate robustness by measuring pass@ 1
accuracy change across Case Transformation (AT T, pper), Structural Reformatting (AT Tstrycture)s
and Redundant Elaboration (AT T j14i1) attacks.

Overall Attack Ineffectiveness The experimental results reveal that adversarial attacks demonstrate
limited effectiveness against modern post-trained LLMs. The majority of evaluated models show min-
imal performance degradation across attack variants. For instance, Qwen3-235B-A22B-Instruct-2507
maintain near-identical performance (0.789 — 0.796, 0.791, 0.788), while OpenAI’s o-series models
(03-mini, o4-mini) exhibit negligible drops, with some variants even showing slight improvements-a
phenomenon consistent with observations by Fang et al. [17]]. Similarly, DeepSeek-Coder-V2-Instruct
maintains consistent performance (0.769 — 0.767, 0.765, 0.773) across all attack types, indicating
robust resilience to external perturbations.

Contradictory Vulnerability Patterns Among LLMs that do exhibit performance drops, we ob-
serve contradictory sensitivity patterns that highlight fundamental limitations in adversarial evaluation.
deepseek-coder-7b-instruct-v1.5 demonstrates severe vulnerability to Case Transformation (0.646
— 0.291) and catastrophic failure under Structural Reformatting (0.646 — 0.011), yet maintains
baseline performance under Redundant Elaboration (0.646 — 0.638). Conversely, Qwen2.5-Coder-
32B-Instruct shows minimal sensitivity to the first two attacks (0.762 — 0.759, 0.751) but significant
degradation under Redundant Elaboration (0.762 — 0.545). This contradictory behavior creates an
evaluation paradox: which model is more robust than the other? deepseek-coder-7b-instruct-v1.5
performs excellently under verbose prompts but fails catastrophically with structural changes, while
Qwen2.5-Coder-32B-Instruct demonstrates the opposite pattern. Such inconsistency makes compara-
tive robustness assessment unreliable for model selection, as conclusions heavily rely on the specific
attack method employed.

Answer Summary to RQ1

Our analysis highlights two key limits of adversarial attacks: (1) Diminished effectiveness —
post-trained LLMs resist external perturbations, making attacks largely ineffective; (2) Inherent
evaluation bias — different attack methods favor different models, leading to conflicting
robustness results and undermining fair comparison.

11

Table 2: Robustness ranking benchmarked by EVALOOOP. Numbers in parentheses denote the
change in ASL ranking relative to the PassRate ranking.

Model ASL Model ASL

1 Claude Opus 4 7.786 (f 2) 49 Mistral-Small-3.2-24B-Instruct-2506 6.029 (1)
2 Qwen3-235B-A22B-Instruct-2507 7.689 (1r 6) 50 Llama-3.1-70B-Instruct 6.023 ({ 7)
3 Qwen3-Coder-480B-A35B-Instruct 7.599 (y 6) 51 Meta-Llama-3-70B-Instruct 6.017 (v 9)
4 Claude Sonnet 4 7.518 (f 6) 52 Qwen3-4B-Instruct-2507 5986 (+ 7)
5 DeepSeek-V3 7.481 (fr 1) 53 Hermes-3-Llama-3.1-70B 5983 (1 1)
6 03-mini 7.456 (I 2) 54 Qwen2.5-Coder-3B-Instruct 5946 (f 7)
7 03 7383 (=) 55 Mistral-Small-3.1-24B-Instruct-2503 5.937 (1 2)

8 GPT-4.1 7.355 (f 4) 56 DeepSeek-V2-Chat 5854 (1 4
9 04-mini 7317} 8) 57 Baichuan-M2-32B 5.827 (I} 25)
10 GPT-4.1-mini 7290 (f 1) 58 deepseek-coder-33b-instruct 5767 7)
11 ol 7285} 9) 59 gemma-3-4b-it 5.766 (1 4)
12 ol-mini 72544 7) 60 Mistral-Small-Instruct-2409 5.700 (f 7)
13 Qwen2.5-Coder-32B-Instruct 7.253 (y 6) 61 Mixtral-8x22B-Instruct-v0.1 5.575(r 5)
14 Gemini 2.5 Flash-Lite 7.178 (fy 1) 62 Codestral-22B-v0.1 5.443 (1) 10)
15 Qwen3-30B-A3B-Instruct-2507 7.124 (y 11) 63 deepseek-coder-7b-instruct-v1.5 5423(r D)
16 Claude Haiku 3.5 7.097 (f 1) 64 Qwen2.5-Coder-1.5B-Instruct 5319 (y 11)
17 DeepSeek-Coder-V2-Instruct 7.070 (v 3) 65 Llama-4-Scout-17B-16E-Instruct 5.224 (1} 29)
18 Gemini 2.0 Flash 7.041 (} 2) 66 gemma-3n-E2B-it 5.051 () 4)
19 GPT-4o0 7.039 (y 4) 67 Phi-4-reasoning 4.897 (1 12)
20 DeepSeek-V2.5 6.945 (1 1) 68 Ministral-8B-Instruct-2410 4.844 (1 11)
21 Llama-4-Maverick-17B-128E-Instruct 6.922 ({} 8) 69 LFM-7B 4.743 (y 11)
22 Gemini 2.5 Flash 6.922 (} 4) 70 Phi-3.5-MoE-instruct 4713 (1 1)
23 gemma-3-27b-it 6.905 (1 4) 71 Phi-3.5-mini-instruct 4.706 (1 12)
24 Gemini 2.5 Pro 6.842 (I} 10) 72 Mixtral-8x7B-Instruct-v0.1 4.687 (f 6)
25 gemma-3-12b-it 6.839 (1) 12) 73 Ling-plus 4.521 (1 8)
26 GPT-4-Turbo 6.820 (1 2) 74 Hermes-3-Llama-3.1-8B 4.446 (1 8)
27 GLM-4.5-Air 6.809 () 6) 75 Meta-Llama-3-8B-Instruct 4310 (r 2)
28 Llama-3.1-405B-Instruct 6.787 (1) 10) 76 Phi-4-mini-instruct 4.008 (1 10)
29 Gemini 2.0 Flash-Lite 6.775(=) 77 Qwen3-235B-A22B 3933} 9)
30 Qwen2.5-Coder-14B-Instruct 6.676 (=) 78 Qwen2.5-Coder-0.5B-Instruct 3.424 (fy 11)
31 Qwen3-Coder-30B-A3B-Instruct 6.669 (9) 79 DeepSeek-V2-Lite-Chat 3.280 (fr 5)
32 NextCoder-32B 6.610 ({} 8) 80 Moonlight-16B-A3B-Instruct 3.181 (4 11)
33 NextCoder-14B 6.520 (f 1) 81 Mistral-7B-Instruct-v0.3 3.129(fr 7)
34 Llama-3.3-70B-Instruct 6.517 (1) 10) 82 NextCoder-7B 3.123 ({} 24)
35 OpenCoder-8B-Instruct 6.490 () 12) 83 Seed-Coder-8B-Reasoning 3.106 (fr 4)
36 Seed-Coder-8B-Instruct 6.452 (I 5) 84 Phi-3-mini-4k-instruct 3.012 () 11)
37 Mistral-Large-Instruct-2407 6.422 (8) 85 Mistral-7B-Instruct-v0.2 2.895 (fr 6)
38 CodeQwenl.5-7B-Chat 6.410 (1) 11) 86 Llama-3.1-8B-Instruct 2.640 (I 10)
39 DeepSeek-Coder-V2-Lite-Instruct 6.377(f 7) 87 DeepSeek-R1-Distill-Llama-70B 2373 ({ 17)
40 Qwen2.5-Coder-7B-Instruct 6.340 (=) 88 Phi-3-medium-4k-instruct 2.368 (1 4)
41 Hermes-3-Llama-3.1-405B 6.295(=) 89 OpenCoder-1.5B-Instruct 2352 (} 15)
42 gemma-3n-E4B-it 6.279 (I 3) 90 Qwen3-4B-Thinking-2507 2.092(=)
43 GPT-3.5-Turbo 6.257 (ff 5) 91 GLM-4-32B-0414 1.959 (I} 26)
44 GLM-4.5 6.226 ({ 19) 92 Jan-v1-4B 1.847 (L 7)
45 GLM-4-9B-0414 6.198 (1 8) 93 Qwen3-1.7B 1.636 (=)
46 Ling-lite-1.5 6.177 (I 4) 94 Claude Haiku 3 1571 (¢ 1)
47 Pixtral-Large-Instruct-2411 6.150 (f+ 9) 95 deepseek-coder-1.3b-instruct 1340} 1)
48 MiniCPM4-8B 6.137 (I} 13) 96 deepseek-coder-6.7b-instruct 1.107 (=)

4.2 Answer to RQ2: Framework Effectiveness

Table 2] presents the comprehensive robustness evaluation of 96 LLMs using EVALOOOP, ranked by
their ASL scores from highest to lowest. Models with high ASL scores demonstrate both the ability
to maintain functional correctness across extended iterations and semantic coherence throughout
self-referential transformations. The numbers in parentheses indicate the change in ASL ranking
relative to each model’s pass@1 accuracy ranking, revealing how robustness assessment differs from
conventional performance metrics.

Robustness vs. Initial Performance Divergence The results demonstrate substantial divergence
between robustness rankings and initial performance capabilities. The majority of models exhibit
significant ranking changes when evaluated through the robustness lens: 88 out of 96 models (91.7%)
show ranking shifts, with a mean absolute deviation of 6.9 positions. Over one-quarter of models
(27.1%) experience large shifts of 10 or more positions, and nearly one in ten model pairs have their
relative ordering reversed between PassRate and ASL evaluations. Notable examples include Qwen3-
235B-A22B-Instruct-2507, which rises 6 positions in robustness ranking despite already strong initial
performance, and conversely, ol and 04-mini, which drop 9 and 8 positions respectively, indicating
that high initial performance does not guarantee sustained stability through iterative transformations.

12

Besides, there are some models experiencing significant drops (e.g., Llama-4-Scout-17B-16E-Instruct
dropping 29 positions, GLM-4-32B-0414 dropping 26 positions), which reveals brittleness that
becomes apparent only through sustained iterative evaluation. Conversely, models with positive
ranking changes demonstrate robustness capabilities that exceed their initial performance suggestions,
offering valuable insights for model selection in deployment scenarios requiring sustained reliability.

The ASL scores reveal pronounced differences in intrinsic stability across models, with scores ranging
from 7.786 (Claude Opus 4) to 1.107 (deepseek-coder-6.7b-instruct). This wide distribution confirms
that robustness represents a distinct capability dimension independent of initial coding competence,
validating the necessity of specialized robustness evaluation frameworks. Remarkably, several models
demonstrate superior robustness despite lower initial performance rankings—for instance, gemma-3-
12b-it rises 12 positions, and OpenCoder-8B-Instruct gains 12 positions, suggesting that sustained
self-consistency may indicate deeper comprehension mechanisms rather than mere memorization
patterns.

Correlation with Agent System Performance Our robustness rankings demonstrate meaningful
correlation with empirical observations from real-world agent deployments. Cross-referencing with
SWE-bench Bash Only Leaderboard [22] E]—which evaluates models in minimal agent environments
using only bash commands—reveals a Spearman correlation coefficient of 0.586 between the two
ranking systems. Specifically, among the 15 overlapping models:

* Perfect alignment: Claude Opus 4 maintain the top-1 ranking in both evaluations.

* Close correspondence: Claude Sonnet 4, 03, Qwen3-Coder-480B-A35B-Instruct, GPT-40, 04-mini,
Llama-4-Scout-17B-16E-Instruct, and Llama-4-Maverick-17B-128E-Instruct maintain close rankings
in both evaluations (£2 position change).

* Significant divergences: GLM-4.5, Gemini 2.5 Pro, GPT-4.1, GPT-4.1-mini, Gemini 2.5 Flash,
Gemini 2.0 Flash, and Qwen2.5-Coder-32B-Instruct exhibit notable ranking discrepancies between
two evaluation (> 3 position change).

These divergences highlight the complementary nature of different robustness assessment approaches.
While SWE-bench evaluates robustness through complex, multi-step software engineering chal-
lenges, EVALOOOP assesses robustness through sustained self-consistency across iterative trans-
formations—a distinct but equally important dimension of model reliability. The observed ranking
differences reflect each framework’s unique focus: SWE-bench emphasizes comprehensive problem-
solving capabilities under complex scenarios, while EVALOOOP specifically targets the fundamental
ability to maintain semantic coherence when processing self-generated outputs. This focused evalua-
tion design enables EVALOOOP to isolate and measure intrinsic stability patterns that may be masked
in more complex evaluation environments.

The positive Spearman correlation coefficient (0.586) demonstrates that EVALOOOP captures stability
characteristics genuinely relevant to agent deployments, while the moderate correlation strength
indicates that robustness assessment through self-consistency represents a complementary evaluation
dimension rather than merely replicating existing performance metrics. This distinction proves
essential for comprehensive model evaluation, where sustained coherence across self-referential
interactions represents a fundamental capability for reliable autonomous operation, distinct from but
complementary to complex problem-solving proficiency.

Answer Summary to RQ2

Our large-scale assessment on 96 LLMs reveals: (1) Robustness-performance divergence - 88
out of 96 models show significant ranking changes (-29 to +12) when evaluated for sustained
stability versus initial performance; (2) Complementary insights - a moderate correlation (0.586)
with agent system performance validates practical relevance while maintaining independence
from conventional metrics, enabling identification of models with superior long-term reliability
despite lower initial performance.

13

Table 3: Prompt sensitivity results. Numbers in parentheses are the rank within the current column;
the final averaged prompt rank is the mean of the five prompt-specific ranks (Prompt1-Prompt5).

Model Baseline Promptl Prompt2 Prompt3 Prompt4 Prompt5 Avg. Prompt Rank
Qwen3-235B-A22B-Instruct-2507 7.689 (1) 7.654 (1) 7.603(1) 7.655(1) 7.710(1) 7.553(1) 1.00
03-mini 7456 (2) 7.272(4) 7489(2) 7481(2) 7.523(2) 71.355(2) 2.40
GPT-4.1 7355(3) 7475(3) 7.372(3) 7431(3) 7445(4) 7348 (3) 3.20
04-mini 7317 (4) 7482(2) 7.299(4) 7.367(4) 7447(3) 1.335(4) 3.40
Qwen?2.5-Coder-32B-Instruct 7.253(5) 7.029(7) 7.022(7) 7.087(6) 7.003(7) 7.020(7) 6.80
DeepSeek-Coder-V2-Instruct 7.070 (6) 7.250(5) 7.147(6) 6.908(7) 7.054(6) 7.081 (6) 6.00
GPT-40 7.039(7) 7.231(6) 7.207(5) 7.163(5) 7.148(5) 7.131(5) 5.20
OpenCoder-8B-Instruct 6.490 (8) 6.236(10) 6.749(8) 6.776(8) 2913 (12) 6.085 (10) 9.60
DeepSeek-Coder-V2-Lite-Instruct ~ 6.377 (9) 6.597 (9) 6.234(10) 6.293(9) 5.949(9) 6.094 (9) 9.20
CodeQwen1.5-7B-Chat 6.340 (10) 6.753(8) 6.277(9) 6.198(10) 6.173(8) 6.146 (8) 8.60
Codestral-22B-v0.1 5443 (11) 5.530(12) 5.209 (12) 5.221(11) 5.404(10) 5.272(12) 11.40
deepseek-coder-7b-instruct-v1.5 5423 (12) 5.804(11) 5.572(11) 2.428(12) 4.969 (11) 5.580 (11) 11.20
Llama-3.1-8B-Instruct 2.640 (13) 2.683 (13) 3.469 (13) 2.065(13) 1.583(13) 5.189(13) 13.00

Table 4: Temperature sensitivity results. Numbers in parentheses are the rank within the current
column; the final averaged temperature rank is the mean of the four temperature-specific ranks (0.2,

0.4, 0.6, and 0.8).
Model Baseline 0.2 04 0.6 0.8 Avg. Temperature Rank
Qwen3-235B-A22B-Instruct-2507 7.689 (1) 7.643 (1) 7.673(1) 7.662 (1) 7.686 (1) 1.00
03-mini 7456 (2) 7.3753) 7458(2) 7410(2) 7.389(3) 2.50
GPT-4.1 7355(3) 72094) 7315(4) 7389(4) 72144 4.00
04-mini 7317(4) 7.622(2) 7389(3) 7395(3) 7431(2) 2.50
Qwen2.5-Coder-32B-Instruct 7.253(5) 7.140(6) 7.082(6) 7.158(5) 7.067 (6) 5.75
DeepSeek-Coder-V2-Instruct 7.070 (6) 7.186(5) 7.124(5) 7.141(6) 7.151(5) 5.25
GPT-40 7.039(7) 6961 (7) 7.036(7) 6.783(7) 6.611(7) 7.00
OpenCoder-8B-Instruct 6.490 (8) 5.838(10) 5.827(9) 5924(9) 5.625(9) 9.25
DeepSeek-Coder-V2-Lite-Instruct ~ 6.377 (9) 6.419(8) 6.385(8) 6.183(8) 6.273(8) 8.00
CodeQwen1.5-7B-Chat 6.340 (10) 6.334(9) 5.381(11) 4916(12) 4.784(10) 10.50
Codestral-22B-v0.1 5443 (11) 5207 (12) 5.025(12) 4.959 (11) 4.734(11) 11.50
deepseek-coder-7b-instruct-v1.5 5.423(12) 5.438(11) 5.467(10) 5.392(10) 4.701 (12) 10.75
Llama-3.1-8B-Instruct 2.640 (13) 2.804 (13) 2.525(13) 1.985(13) 1.246(13) 13.00

4.3 Answer to RQ3: Framework Reliability

Tables [3]and [4] present the reliability analysis of EVALOOOP across prompt variations and different
temperature settings. We evaluate our framework stability by examining the variation of standard
ASL score and ranking consistency across different experimental conditions, with rankings shown in
parentheses for each model.

Prompt Reliability Analysis To assess prompt reliability, we compute the ranking for each LLM
across all prompt variants (Prompts 1-5) and compare it with the original rankings. Our analysis
reveals remarkable stability in model rankings despite prompt variations. For instance, Qwen3-235B-
A22B-Instruct-2507 maintains consistent top ranking (rank 1) across all prompt conditions, while
models like Llama-3.1-8B-Instruct consistently occupy the bottom position (rank 13). Computing
the average rankings across prompt variants yields: Qwen3 (1.0), 03-mini (2.4), gpt-4.1 (3.2), 04-
mini (3.4), demonstrating minimal deviation from baseline rankings. Moreover, the Spearman
rank correlation coefficient between original and average prompt rankings is 0.951, indicating
exceptionally high framework stability against prompt modifications.

Temperature Reliability Analysis Our temperature reliability analysis also reveals similar stability
patterns across sampling configurations. Computing average rankings across temperatures 0.2-0.8:
Qwen3 (1.0), 03-mini (2.5), gpt-4.1 (4.0), DeepSeek-Coder-V2-Instruct (5.25), Qwen2.5-Coder-
32B (5.75), show minimal ranking perturbations from baseline. The Spearman rank correlation
coefficient between original and average temperature rankings is 0.974, demonstrating even higher
stability than prompt variations. Notably, higher temperatures generally correlate with slight ASL
score reductions (e.g., Codestral-22B-v0.1: 5.443 — 4.734, CodeQwen1.5-7B-Chat: 6.340 — 4.784
at temperature 0.8), reflecting increased generation stochasticity. However, relative model rankings
remain largely preserved despite these score variations.

"https://www.swebench.com/bash-only.html

14

Answer Summary to RQ3

Our reliability analysis reveals: (1) Prompt robustness - Spearman correlation of 0.951 between
baseline and prompt-varied rankings, with minimal ranking perturbations (+1-2 positions)
across semantic-preserving modifications; (2) Temperature stability - Even higher correlation
of 0.974 across temperature settings (0.2-0.8), indicating that observed robustness differences
reflect genuine model capabilities rather than experimental artifacts, validating EVALOOOP as
a reliable evaluation framework for fair model comparison.

5 Discussion: The Extension of EVALOOOP by Code Translation Loop

To demonstrate the extensibility of our framework, we implement a code translation variant that
evaluates robustness through iterative translation across multiple programming languages. Instead of
alternating between code generation and summarization, this extension maintains the code domain
throughout while testing semantic preservation across different programming paradigms. The code
translation loop operates by establishing a continuous translation chain where each successful
conversion represents one evaluation iteration. Starting with functionally correct source code in an
initial programming language, the LLLM receives translation prompts (e.g., "Convert the following
Python code to PHP"), performs the translation, and undergoes rigorous testing through language-
specific test suites. Upon successful validation, the process continues to the next language in the
predetermined sequence. Each successful translation step contributes one loop count to the ASL
calculation, with failure occurring when the translated code fails to pass the test.

350

w
o
o

N
S
o

o B e ex{ R

—e— Codestral-22B-v0.1 (ASL: 2.40)
-m- deepseek-coder-7b-instruct-v1.5 (ASL: 1.70)
DeepSeek-Coder-V2-Lite-Instruct (ASL: 1.74)
@ GPT-3.5-Turbo (ASL: 2.25)
—¥— GPT-4.1 (ASL: 2.89)
-e- GPT-4.1-mini (ASL: 2.89)
—+— GPT-40 (ASL: 2.67)
- GPT-4-Turbo (ASL: 2.80)
—w— Llama-3.1-8B-Instruct (ASL: 1.29)
o1 (ASL: 2.81)
ol-mini (ASL: 2.76)
-m- 03-mini (ASL: 2.83)
o4-mini (ASL: 2.72)
50 OpenCoder-8B-Instruct (ASL: 2.16)
—*— Qwen2.5-Coder-32B-Instruct (ASL: 2.51)
+- CodeQwenl.5-7B-Chat (ASL: 1.60)

number of passed tasks in MBPP
= N
w o
o o

=
o
o

baseline php ruby javascript perl python
Language

Figure 4: Robustness assessment of LLMs on Framework 2.

We construct a five-step translation chain: Python — PHP — Ruby — JavaScript — Perl — Python,
creating a complete loop that returns to the original language. This design tests the model’s ability to
preserve program semantics across diverse paradigms including scripting languages, web-oriented
languages, and general-purpose programming environments. We evaluate this extension using
the MXEVAL benchmark [5]], which provides comprehensive test suites for cross-language code
evaluation. As shown in Fig.[d] the experimental results on 16 mainstream LLMs reveal substantial
performance degradation across successive translation loops, with pass@1 accuracy declining by
32.00%—54.13% compared to the initial performance. Notably, the robustness rankings mirror
those observed in our original framework, where initial translation performance does not necessarily
correlate with sustained robustness across the complete chain. GPT-4.1 and GPT-4.1-mini achieve the
highest ASL scores of 2.89, followed by 03-mini (2.83), demonstrating superior semantic preservation

15

capabilities. Conversely, open-source models exhibit greater challenges, with Llama-3.1-8B-Instruct
recording the lowest ASL score of 1.29.

6 Related Work

LLMs’ Robustness in Programming. Code generation has emerged as the predominant practical
application of Al in programming environments [25]], catalyzing extensive research into the robustness
of LLMs in this domain. Empirical assessments of commercial systems reveal concerning vulnerabil-
ities: GitHub Copilot produces inconsistent implementations for semantically equivalent prompts
in 46% of cases, with correctness variations reaching 28% between prompt variants [29]]. Similarly,
Codex exhibits substantial sensitivity to minor linguistic perturbations in task specifications [41}|54].
The research community has responded with LLMs’ robustness through diverse adversarial tech-
niques [[12,152} 20| [7]] alongside corresponding defensive strategies [[19, 49\ [18]. However, different
adversarial attacks might "favor" different LLMs, potentially leading to contradictory conclusions
about a model’s robustness depending on the specific attack employed, struggling in a unified eval-
uation. EVALOOOP addresses this critical gap by leveraging the duality between generation and
understanding, enabling unified robustness assessment across LLMs with the average number of
sustainable loops, i.e., ASL. This novel approach provides a natural measure of LLMs’ robustness in
programming.

Duality in Software Engineering Tasks. The concept of duality in software engineering was first
proposed by Wei et al [44], which demonstrated that these complementary tasks require consistent
semantic understanding from opposing perspectives. This foundational concept has been leveraged
for different evaluation purposes. Min et al. [[30] propose IdentityChain, a framework that evaluates
whether Code LLMs can maintain semantic consistency when translating between natural language
and code in both directions. They introduces the Test Output Match (TOM) to compares the exact
outputs of two programs across all test cases rather than just pass/fail results, capturing fine-grained
semantic differences by examining specific return values and complete error messages for syntax
or runtime errors. Allamanis et al. [3]] introduce Round-Trip Correctness (RTC) as an unsupervised
evaluation method for Code LLMs that leverages the natural duality between tasks like code generation
and code summarization, where a model generates a prediction, feeds it back through the inverse task,
and checks if the round-trip preserves semantic equivalence to the original input. RTC demonstrates
strong correlation with existing metrics on narrow-domain benchmarks like HumanEval [11] and
ARCADE [50] while enabling evaluation across a much broader spectrum of real-world software
domains without requiring costly human annotations.

Our framework introduces three key innovations that distinguish it from prior duality-based ap-
proaches: (1) iterative stress-testing through multiple consecutive transformation loops that progres-
sively challenge model stability rather than single round-trip evaluations, (2) the Average Sustainable
Loops (ASL) metric that quantifies long-term degradation patterns and robustness thresholds rather
than binary correctness or semantic equivalence at individual time points, and (3) framework extensi-
bility across diverse dual task configurations, demonstrated through both generation-summarization
cycles and cross-language code translation chains. Crucially, our empirical findings reveal a key
insight that neither IdentityChain nor RTC captures: initial performance does not reliably predict
sustained robustness. LLMs with superior single-task accuracy cannot always exhibit superiror stabil-
ity across multiple iterations, while some LLMs with competetive initial capabilities demonstrate
superior resilience under iterative stress—a phenomenon critical for understanding LLM reliability in
production environments but invisible to single-round evaluations.

7 Conclusion

In this paper, we addressed critical limitations in current LLLM robustness evaluation for program-
ming, which rely on biased adversarial attacks and overlook sustained consistency capabilities. We
introduced EVALOOOP, a novel framework that assesses robustness through self-contained iterative
loops between dual software engineering tasks such as code generation and summarization. Our
comprehensive evaluation of 96 LLMs reveals that initial programming proficiency does not correlate
with sustained robustness, with 85 models showing significant ranking changes when evaluated
for long-term stability. The proposed Average Sustainable Loops (ASL) metric provides a unified
and unbiased robustness assessment that correlates meaningfully with agent system performance

16

while maintaining exceptional framework stability across experimental variations. EVALOOOP offers
authentic insights into model reliability for deployment scenarios requiring sustained autonomous
operation, contributing to understanding of self-consistency as a fundamental dimension of LLM
robustness beyond adversarial resilience.

Looking ahead, we plan to conduct qualitative analysis of experimental results to systematically
investigate why certain models exhibit superior robustness while others fail quickly, we aim to
develop targeted enhancement strategies that improve model stability within our evaluation paradigm,
ultimately providing more reliable LLM foundations for agent system construction.

References

[1] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[2] W. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang. A transformer-based approach for
source code summarization. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 4998-5007, 2020.

[3] M. Allamanis, S. Panthaplackel, and P. Yin. Unsupervised evaluation of code llms with
round-trip correctness. arXiv preprint arXiv:2402.08699, 2024.

[4] M. Anand, P. Kayal, and M. Singh. Adversarial robustness of program synthesis models. In
Advances in Programming Languages and Neurosymbolic Systems Workshop, 2021.

[5] B. Athiwaratkun, S. K. Gouda, Z. Wang, X. Li, Y. Tian, M. Tan, W. U. Ahmad, S. Wang,
Q. Sun, M. Shang, et al. Multi-lingual evaluation of code generation models. arXiv preprint
arXiv:2210.14868, 2022.

[6] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan, E. Jiang, C. Cai, M. Terry,
Q. Le, et al. Program synthesis with large language models. arXiv preprint arXiv:2108.07732,
2021.

[7] B. Baci¢, C. Feng, and W. Li. Jy61 imu sensor external validity: A framework for advanced
pedometer algorithm personalisation. ISBS Proceedings Archive, 42(1):60, 2024.

[8] B. Bacié, C. Vasile, C. Feng, and M. G. Ciucd. Towards nation-wide analytical healthcare
infrastructures: A privacy-preserving augmented knee rehabilitation case study. arXiv preprint
arXiv:2412.20733, 2024.

[9] M. Bhatt, S. Chennabasappa, Y. Li, C. Nikolaidis, D. Song, S. Wan, F. Ahmad, C. Aschermann,
Y. Chen, D. Kapil, et al. Cyberseceval 2: A wide-ranging cybersecurity evaluation suite for
large language models. arXiv preprint arXiv:2404.13161, 2024.

[10] M. Bhatt, S. Chennabasappa, C. Nikolaidis, S. Wan, I. Evtimov, D. Gabi, D. Song, F. Ahmad,
C. Aschermann, L. Fontana, et al. Purple llama cyberseceval: A secure coding benchmark for
language models. arXiv preprint arXiv:2312.04724, 2023.

[11] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan, H. Edwards, Y. Burda,
N. Joseph, G. Brockman, et al. Evaluating large language models trained on code. arXiv
preprint arXiv:2107.03374, 2021.

[12] N. Chen, Q. Sun, J. Wang, M. Gao, X. Li, and X. Li. Evaluating and enhancing the robustness
of code pre-trained models through structure-aware adversarial samples generation. In Findings
of the Association for Computational Linguistics: EMNLP 2023, pages 14857-14873, 2023.

[13] Z. Chen, Y. Pan, S. Lu, J. Xu, C. L. Goues, M. Monperrus, and H. Ye. Prometheus:
Unified knowledge graphs for issue resolution in multilingual codebases. arXiv preprint
arXiv:2507.19942, 2025.

[14] F. 1. Craik. Levels of processing: Past, present... and future? Memory, 10(5-6):305-318, 2002.

17

[15] S. Dora, D. Lunkad, N. Aslam, S. Venkatesan, and S. K. Shukla. The hidden risks of 1lm-
generated web application code: A security-centric evaluation of code generation capabilities in
large language models. arXiv preprint arXiv:2504.20612, 2025.

[16] A.Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
A. Yang, A. Fan, et al. The llama 3 herd of models. arXiv preprint arXiv:2407.21783, 2024.

[17] S.Fang, W. Ding, A. Mastropaolo, and B. Xu. Smaller= weaker? benchmarking robustness of
quantized llms in code generation. arXiv preprint arXiv:2506.22776, 2025.

[18] Y. Ge, W. Sun, Y. Lou, C. Fang, Y. Zhang, Y. Li, X. Zhang, Y. Liu, Z. Zhao, and Z. Chen.
Demonstration attack against in-context learning for code intelligence. arXiv preprint
arXiv:2410.02841, 2024.

[19] C. Improta, P. Liguori, R. Natella, B. Cukic, and D. Cotroneo. Enhancing robustness of ai
offensive code generators via data augmentation. Empirical Software Engineering, 30(1):7,
2025.

[20] A.Jha and C. K. Reddy. Codeattack: Code-based adversarial attacks for pre-trained program-
ming language models. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
14892-14900, 2023.

[21] C. E.Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. Narasimhan. Swe-bench:
Can language models resolve real-world github issues? In 12th International Conference on
Learning Representations, ICLR 2024, 2024.

[22] C.E.Jimenez, J. Yang, A. Wettig, S. Yao, K. Pei, O. Press, and K. R. Narasimhan. SWE-bench:
Can language models resolve real-world github issues? In The Twelfth International Conference
on Learning Representations, 2024.

[23] W. Kwon, Z. Li, S. Zhuang, Y. Sheng, L. Zheng, C. H. Yu, J. Gonzalez, H. Zhang, and I. Stoica.
Efficient memory management for large language model serving with pagedattention. In
Proceedings of the 29th symposium on operating systems principles, pages 611-626, 2023.

[24] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrittwieser, R. Leblond, T. Eccles, J. Keeling,
F. Gimeno, A. Dal Lago, et al. Competition-level code generation with alphacode. Science,
378(6624):1092-1097, 2022.

[25] J. T. Liang, C. Yang, and B. A. Myers. A large-scale survey on the usability of ai programming
assistants: Successes and challenges. In Proceedings of the 46th IEEE/ACM international
conference on software engineering, pages 1-13, 2024.

[26] A. Liu, B. Feng, B. Xue, B. Wang, B. Wu, C. Lu, C. Zhao, C. Deng, C. Zhang, C. Ruan, et al.
Deepseek-v3 technical report. arXiv preprint arXiv:2412.19437, 2024.

[27] J. Liu, C. S. Xia, Y. Wang, and L. Zhang. Is your code generated by chatgpt really correct? rig-
orous evaluation of large language models for code generation. Advances in Neural Information
Processing Systems, 36, 2024.

[28] A. Lozhkov, R. Li, L. B. Allal, F. Cassano, J. Lamy-Poirier, N. Tazi, A. Tang, D. Pykhtar,
J. Liu, Y. Wei, et al. Starcoder 2 and the stack v2: The next generation. arXiv preprint
arXiv:2402.19173, 2024.

[29] A. Mastropaolo, L. Pascarella, E. Guglielmi, M. Ciniselli, S. Scalabrino, R. Oliveto, and
G. Bavota. On the robustness of code generation techniques: An empirical study on github
copilot. In 2023 IEEE/ACM 45th International Conference on Software Engineering (ICSE),
pages 2149-2160. IEEE, 2023.

[30] M. J. Min, Y. Ding, L. Buratti, S. Pujar, G. Kaiser, S. Jana, and B. Ray. Beyond accuracy:
Evaluating self-consistency of code large language models with identitychain. arXiv preprint
arXiv:2310.14053, 2023.

[31] A. Mohsin, H. Janicke, A. Wood, 1. H. Sarker, L. Maglaras, and N. Janjua. Can we trust large
language models generated code? a framework for in-context learning, security patterns, and
code evaluations across diverse llms. arXiv preprint arXiv:2406.12513, 2024.

18

[32] T.-D. Nguyen, Y. Zhou, X. B. D. Le, P. Thongtanunam, and D. Lo. Adversarial attacks on code
models with discriminative graph patterns. arXiv preprint arXiv:2308.11161, 2023.

[33] E. Nijkamp, B. Pang, H. Hayashi, L. Tu, H. Wang, Y. Zhou, S. Savarese, and C. Xiong. Codegen:
An open large language model for code with multi-turn program synthesis. In The Eleventh
International Conference on Learning Representations, 2023.

[34] Y. Oda, H. Fudaba, G. Neubig, H. Hata, S. Sakti, T. Toda, and S. Nakamura. Learning to generate
pseudo-code from source code using statistical machine translation. In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 574-584. IEEE,
2015.

[35] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. Wainwright, P. Mishkin, C. Zhang, S. Agarwal,
K. Slama, A. Ray, et al. Training language models to follow instructions with human feedback.
Advances in neural information processing systems, 35:27730-27744, 2022.

[36] R. Rafailov, A. Sharma, E. Mitchell, C. D. Manning, S. Ermon, and C. Finn. Direct preference
optimization: Your language model is secretly a reward model. Advances in neural information
processing systems, 36:53728-53741, 2023.

[37] S. Rasnayaka, G. Wang, R. Shariffdeen, and G. N. Iyer. An empirical study on usage and
perceptions of 1lms in a software engineering project. In Proceedings of the 1st International
Workshop on Large Language Models for Code, pages 111-118, 2024.

[38] B. Roziere, J. Gehring, F. Gloeckle, S. Sootla, I. Gat, X. E. Tan, Y. Adi, J. Liu, R. Sauvestre,
T. Remez, et al. Code llama: Open foundation models for code. arXiv preprint
arXiv:2308.12950, 2023.

[39] M. Sclar, Y. Choi, Y. Tsvetkov, and A. Suhr. Quantifying language models’ sensitivity to
spurious features in prompt design or: How i learned to start worrying about prompt formatting.
In The Twelfth International Conference on Learning Representations, 2024.

[40] Z. Shao, P. Wang, Q. Zhu, R. Xu, J. Song, X. Bi, H. Zhang, M. Zhang, Y. Li, Y. Wu, et al.
Deepseekmath: Pushing the limits of mathematical reasoning in open language models. arXiv
preprint arXiv:2402.03300, 2024.

[41] A. Shirafuji, Y. Watanobe, T. Ito, M. Morishita, Y. Nakamura, Y. Oda, and J. Suzuki. Exploring
the robustness of large language models for solving programming problems. arXiv preprint
arXiv:2306.14583, 2023.

[42] S. Wan, C. Nikolaidis, D. Song, D. Molnar, J. Crnkovich, J. Grace, M. Bhatt, S. Chennabasappa,
S. Whitman, S. Ding, et al. Cyberseceval 3: Advancing the evaluation of cybersecurity risks
and capabilities in large language models. arXiv preprint arXiv:2408.01605, 2024.

[43] S. Wang, Z. Li, H. Qian, C. Yang, Z. Wang, M. Shang, V. Kumar, S. Tan, B. Ray, P. Bhatia, et al.
Recode: Robustness evaluation of code generation models. arXiv preprint arXiv:2212.10264,
2022.

[44] B. Wei, G. Li, X. Xia, Z. Fu, and Z. Jin. Code generation as a dual task of code summarization.
Advances in neural information processing systems, 32, 2019.

[45] X. Wei, S. K. Gonugondla, S. Wang, W. Ahmad, B. Ray, H. Qian, X. Li, V. Kumar, Z. Wang,
Y. Tian, et al. Towards greener yet powerful code generation via quantization: An empirical
study. In Proceedings of the 31st ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages 224-236, 2023.

[46] C. S. Xia, Y. Deng, S. Dunn, and L. Zhang. Demystifying llm-based software engineering
agents. Proceedings of the ACM on Software Engineering, 2(FSE):801-824, 2025.

[47] S. Xu, Z. Li, K. Mei, and Y. Zhang. Core: Llm as interpreter for natural language pro-

gramming, pseudo-code programming, and flow programming of ai agents. arXiv preprint
arXiv:2405.06907, 2, 2024.

19

[48]

[49]

[50]

[51]

[52]

[53]

[54]

H. Yan, S. S. Vaidya, X. Zhang, and Z. Yao. Guiding ai to fix its own flaws: An empirical study
on llm-driven secure code generation. arXiv preprint arXiv:2506.23034, 2025.

Z. Yang, Z. Sun, T. Z. Yue, P. Devanbu, and D. Lo. Robustness, security, privacy, explainability,
efficiency, and usability of large language models for code. arXiv preprint arXiv:2403.07506,
2024.

P. Yin, W.-D. Li, K. Xiao, A. Rao, Y. Wen, K. Shi, J. Howland, P. Bailey, M. Catasta,
H. Michalewski, et al. Natural language to code generation in interactive data science notebooks.
arXiv preprint arXiv:2212.09248, 2022.

W. Zaremba, E. Nitishinskaya, B. Barak, S. Lin, S. Toyer, Y. Yu, R. Dias, E. Wallace, K. Xiao,
J. Heidecke, et al. Trading inference-time compute for adversarial robustness. arXiv preprint
arXiv:2501.18841, 2025.

C. Zhang, Z. Wang, R. Zhao, R. Mangal, M. Fredrikson, L. Jia, and C. Pasareanu. Attacks and
defenses for large language models on coding tasks. In Proceedings of the 39th IEEE/ACM
International Conference on Automated Software Engineering, pages 2268-2272, 2024.

Y. Zhang, H. Ruan, Z. Fan, and A. Roychoudhury. Autocoderover: Autonomous program
improvement. In Proceedings of the 33rd ACM SIGSOFT International Symposium on Software
Testing and Analysis, pages 1592-1604, 2024.

T. Y. Zhuo, Z. Li, Y. Huang, F. Shiri, W. Wang, G. Haffari, and Y.-F. Li. On robustness of
prompt-based semantic parsing with large pre-trained language model: An empirical study on
codex. arXiv preprint arXiv:2301.12868, 2023.

20

	Introduction
	Proposed Framework: EvaLooop
	Duality Loop
	Proposed Metric: Average Sustainable Loops (ASL)
	Novel Advantages of EvaLooop

	Experimental Setup
	Research Questions
	Methodology for Answering RQ1
	Methodology for Answering RQ2
	Methodology for Answering RQ3
	Greedy Decoding vs. Temperature Sampling
	Implementation

	Results
	Answer to RQ1: Adversarial Attack Limitations
	Answer to RQ2: Framework Effectiveness
	Answer to RQ3: Framework Reliability

	Discussion: The Extension of EvaLooop by Code Translation Loop
	Related Work
	Conclusion

