
Generative AI to
Generate Test Data
Generators
Benoit Baudry, Khashayar Etemadi, Sen Fang, Yogya Gamage, Yi Liu, Yuxin Liu, Martin Monperrus, Javier
Ron, André Silva, Deepika Tiwari

{baudry, khaes, senf, yogya, raphina, yuxinli, monperrus, javierro, andreans, deepikat}@kth.se

KTH Royal Institute of Technology, Sweden

1. Introduction
Software tests require data that is realistic, but not
real. For example, banking applications cannot be
tested with actual customer names and addresses. In
these situations, developers rely on fake data gener-
ators, also known as fakers, to generate test data to
be used in automated tests. Fakers exist in all pro-
gramming languages. For example, the faker gem and
java-faker are popular faking libraries for the Ruby
and Java languages. Faking libraries usually include
generators for names, phone numbers, and addresses.
The development of test data generators is challenging,
as they must consider several constraints. For example,
name generators must capture the cultural sphere into
which the system under test is being deployed. In many
Spanish-speaking countries, a family name generator
must output two names separated by a space. Another
constraint relates to humor, as fakers have been proven
to be a strong vector of healthy humor for bond-
ing software development teams [1]. For an English-
speaking developer, character names from Star Trek
or Seinfeld are more exciting test data than John
Doe, and there is support for this in faking libraries.
Hence, the most advanced faking libraries contain data
generators for specific languages, idioms, and cultures.
These faking libraries are under constant evolution to
stay in tune with testing constraints and the testing
culture of the time.

Our intuition is that Large Language Models
(LLMs) are powerful tools for supporting developers
in evolving faking libraries. They are unique systems
that possibly encode: 1) domain expertise, 2) testing
fluency, and 3) cultural literacy. Domain expertise
is key in testing because most interesting data con-
straints come from the domain. For example, a French
mobile phone number generator might output ‘08 790
60 001’. This would be incorrect, as a French num-
ber must start either with ‘06’ or ‘07’, and be split

Under peer-review

every two digits, e.g., ‘06 79 06 00 01’. For test data
generators to be usable, they must be executable, and
in some cases readily integrated into existing testing
frameworks that have conventions. For test fakers to
engage developers, they should generate data that is
both valid with respect to domain constraints and
contains references to their language and culture. Our
key intuition is that the generative power of LLMs can
help master these three key aspects and be used for the
generation of fake test data.

In this paper, we study the original task of using
LLMs for producing fake test data. To the best of
our knowledge, this promising area has never been
studied. We fully implement an approach based on
the state-of-the-art LLM from OpenAI. To assess the
feasibility of our approach, we curate real-world test
data generation scenarios. For example, we can use
our approach to generate fake movie character names
to be used by a market-leading streaming service in
China. We systematically assess the ability of the
LLM to generate 1) test data that is fit for testing,
and is culturally adequate; 2) executable code that
synthesizes fake data; and 3) end-to-end code that is
interoperable with state-of-the-art test data fakers.

To evaluate our approach, we have prompted the
LLM 63 times to generate test data. We find that our
intuition is fully validated: LLMs are indeed able to
generate fake test data that is realistic, complies with
data constraints, and is readily usable in a testing con-
text. When prompted for executable code and not only
data, the LLM produces executable test data genera-
tors, ready to be used in test cases. To maximize ease
of use and integration within test suites, it is important
that the LLM has knowledge about existing faking
frameworks: our experiments have also validated this
aspect. Finally, we have extensively assessed the qual-
itative aspects of the generated test data: LLMs are
able to capture key cultural dimensions, including lan-
guage and humor. To sum up, our work demonstrates
that LLMs can be used to generate high-quality fake
data. Our data and generated fakers are available
at https://github.com/ASSERT-KTH/lollm.

1

https://github.com/ASSERT-KTH/lollm

Faking Libraries

The goal of a faking library is to generate real-
istic fake data, which is used as a substitute for
real data within software tests. Fakers contain a
rich collection of domain and locale-specific data,
such as for the generation of user names or the
generation of Chinese dishes. The first faker, an
open-source library called Data::Faker introduced
in 2005, produces fake data to test PERL programs.
Its six generators provide data related to compa-
nies, dates and times, entities on the Internet such
as email or IP addresses, Western names of persons,
phone numbers, and US-specific street addresses.
Data::Faker is designed to be flexible such that
developers can extend it to define custom data
generators. Over the years, multiple open-source
faking libraries have emerged and are actively
developed for all major programming languages,
including Ruby, Python, Java, JavaScript, Rust,
Haskell, and C++.

In addition to conventional fakers, such as email
generators, the developers of faking libraries incor-
porate data generators with strong cultural and
humorous references [1]. When used within a test
case, a quote from Futurama is likely as effective
a string input as is Lorem ipsum text, with the
added benefit that it is amusing to a developer who
encounters it. Furthermore, good locale support
within a faker can be helpful for developers who
need test inputs in their native language, or to
verify the internationalization of their system.

2. Test Data Generation with LLMs
Testing aims at exercising a software system realisti-
cally, without the system being deployed to an actual
production environment. Instead of using production
values in testing scenarios, developers rely on hard-
coded data or fake data produced by so-called test
fakers. In this work, we focus on generating test fakers,
either in the form of pure data, or in the form of
test modules that can be reused by developers to
generate test data. In modern development, test fakers
are typically provided as reusable faking libraries (see
sidebar).

2.1. Overview
Figure 1 summarizes the key steps of our approach for
generating fake test data with LLMs. First, we design
prompts, which state the testing domain, the cultural
constraints, as well as the programming language that

the test generators should harness. We illustrate with
a realistic use case for our approach: testing a system
for public administration. Such a system requires fake
addresses that fulfill country-specific constraints, such
as the language for street names or the specificities of
postal codes. We propose three types of prompts, with
different levels of complexity for the LLM-generated
test generators, referred to as M1, M2, and M3. The
M1 prompt asks the LLM to directly generate pure
test data (e.g., addresses in Lisbon for a rental agency),
with no code involved. M2 directs the LLM to generate
a program that generates data (e.g., a Java program
that generates addresses in Quimperlé for the French
tax agency). With M3, we prompt the LLM to gen-
erate a program that generates fake data, and that
aligns with a specific faking library (e.g., an address
generator pluggable within Faker.js, to be used by a
real estate company in Boston).

The second step is applicable to the outputs for M2
and M3. Here, we execute the data generator code, as
presented in Figure 1. Since the M2 and M3 prompts
produce programs that generate data, it is necessary
to actually run them to obtain the test data. Finally,
the generated test data is used as input data within
test cases for the system under test, such as the public
administration software system.

2.2. M1: Directly Generate Test Data
In this mode, we use the ability of the LLM to generate
pure test data. The outputs of M1 are directly used
as inputs to test a software system. The core foun-
dation of M1 is to craft a prompt that states: 1) the
application domain of the system under test, 2) the
expected natural language and cultural sphere, and,
3) the expected number of items.

For example, the prompt “生成十个中国武汉的假
地址。” asks for fake addresses in Wuhan, China, that
can be used as test data for the social security system
for Wuhan residents. The expected outcome is a list
of ten addresses that align with the Chinese address
format and district names in Wuhan. Figure 1 presents
an equivalent Portuguese prompt for addresses in Lis-
bon. A test harness takes the generated list of items
and feeds it into the system under test.

2.3. M2: Generate Executable Test Data
Generators
Beyond raw test data generation, LLMs can also
be employed to produce executable code, which can
generate random fake testing data. We refer to this
mode as M2. This executable code is then integrated
by developers to generate fake data into their test

2

https://metacpan.org/pod/Data::Faker
https://github.com/faker-ruby/faker/blob/7cf0bbb99cb843fec5a0eb6d0115dfaf0b0aa6a9/lib/locales/en/futurama.yml#L338
https://fakerjs.dev/

Large Language
Model (LLM)

Gera 10 moradas realistas em
Lisboa.

Générer un générateur de
données de test en Java qui

produit 10 adresses réalistes à
Quimperlé, sans utiliser de

bibliothèque de test.

Generate a Faker.js style
faker that can produce at least

10 addresses in Boston.

M1

M2

M3

Rua da Misericórdia, Lisboa 1200-257
Rua de São Bento, Lisboa 1200-821
Travessa da Laje, Lisboa 1100-503
... M1

Prompt

Test data generators

 public class AdresseGenerator {
 private static final String[] villes = {
 "Quimperlé", "Mellac", "Rédéné", ... };

 private static final String[] codesPostaux = {
 "29300", "29380", "29350", ... };
 ...
 }

M2

 const faker = require('faker');
 faker.address.bostonAddress = function() {
 return faker.address.streetAddress() + ', ' +
 ... + ', ' + 'Boston, ' +
 faker.address.stateAbbr() + ' ' +
 faker.address.zipCodeByState(faker.address
 .stateAbbr()); };
 ... M3

 $ java AddresseGenerator
 20 Impasse des Marronniers,
 29300 Moëlan-sur-Mer

 1 Avenue de la Liberté,
 29310 Clohars-Carnoët

 61 Impasse des Marronniers,
 29350 Quimperlé
 ...

 $ node boston.js
 16272 O'Keefe Park, North Amber,
 Boston, MA 91917

 87942 Mitchell Path, South Achille,
 Boston, MA 09343

 119 Dusty Streets, East Salvatore,
 Boston, MA 49498
 ...

Sy
st

em
 u

nd
er

 te
st

Test data

Generate 10 realistic addresses in Lisbon. Generate a test generator in Java that produces 10 realistic addresses in Quimperlé without using a faking library.

FIGURE 1. Overview of our approach for generating test data generators embedded in application domains and cultural spheres.
We design three prompt types with the goal of generating test data. The prompts request for an output formatted as realistic fake
data (M1), an automated data generator in a specific programming language (M2), or an automated data generator tailored to a
specific faking library (M3). The output of the LLM is either fake data (M1), or a fake data generator (M2, M3). Our culturally
diverse team of authors analyzes the adequacy of this output in order to evaluate the ability of the LLM to generate test data
that is domain adequate and culturally adequate.

suite. Figure 1 shows an example prompt for M2.
The prompt has three main sections. First, a message
guides the LLM to “synthesize a test data generator
without using any library.” Second, the prompt spec-
ifies the target programming language in which the
data generator should be synthesized, such as “Java”.
The third component mentions the type and the cul-
tural context of the data that should be generated,
e.g., “the program should produce addresses in Quim-
perlé.” M2 prompts leverage the assumed capability
of LLMs to 1) understand the testing domain, and 2)
generate complete, executable code [2].

2.4. M3: Generate Complete Interoperable Test
Fakers
In the M3 mode, we synthesize end-to-end test data
generators on top of existing faking libraries (see side-
bar). The main motivation for this mode is to minimize
the effort of integrating the test generators in a test
suite. To that extent, M3 prompts are more effective
than M2 prompts. This productivity boost happens
thanks to the benefits of software reuse, here in the
context of faking libraries.

Figure 1 shows an example prompt used for M3.
The prompt asks the LLM to create a test data gen-
erator that specifically uses the Faker.js library. It
also specifies the type of data that should be produced
by the test data generator, such as “10 addresses in
Boston”.

3. Experimental Methodology
With the three modes of prompting described above,
we generate test data and test data generators for var-
ious application domains. To this end, we draw upon
the diverse backgrounds and expertise of co-authors,
and guide GPT-4 to generate test data generators for
applications in Chinese, Farsi, Portuguese, Sinhalese,
French, Hindi, Spanish, and English. We devise three
research questions to evaluate our novel approach of
test data synthesis with LLMs:

• RQ1: To what extent is the LLM able to gen-
erate high quality, domain-adequate data?

• RQ2: To what extent is the LLM able to gener-
ate executable code that synthesizes fake data?

• RQ3: To what extent is the LLM able to gener-
ate end-to-end, interoperable test data fakers?

Our experimental artifacts can be found in https:
//github.com/ASSERT-KTH/lollm.

3.1. RQ1 Domain adequacy
In this RQ, we assess the ability of the LLM to gener-
ate high quality test data that is appropriate for the
specified application domain. We manually examine
the outputs from the LLM by matching one or several
authors’ cultural backgrounds, as well as relevance to
the application domain. We check that the synthesized
fake data is 1) realistic, 2) appropriate with respect to

3

https://github.com/ASSERT-KTH/lollm
https://github.com/ASSERT-KTH/lollm

the semantics of the domain, and 3) contains specific
cultural dimensions, if the prompt expects some.

3.2. RQ2 Executability
In RQ2, we assess the ability of the LLM to synthesize
executable code that generates fake data. To do that,
we write M2 and M3 prompts and run the code pro-
duced by the LLM. We check whether this generated
code can successfully be executed to completion. We
also check for domain adequacy per the rule described
in RQ1.

3.3. RQ3 Interoperability
For the final RQ, we evaluate the ability of the LLM
to generate accurate, high-quality end-to-end test data
fakers with the M3 mode. We start with the same
evaluation criteria for adequacy and executability per
RQ1 and RQ2. Additionally, we select one open-source
project that uses a faking library in its test suite.
We replace the original faker with the LLM-generated
version. Finally, we run the full test suite of the project
to verify that all the tests still pass with the generated
fake data.

4. Experimental Results
We have prompted the LLM 63 times, in 8 different
natural languages, and within 10 application domains.
For the sake of brevity, we focus on a subset of domains
and prompts, in each research question. The curious
reader can browse our appendix repository for more
fake test data generators.

4.1. RQ1: Data Adequacy
When prompting the LLM to generate pure test data,
we discover a high level of cultural adequacy in 5 cases,
and an absence of adequacy in 2 cases. We now discuss
the cultural context and the adequacy of the LLM
output for two domains.

4.1.1. Case study: Adequacy of Chinese data for testing a
streaming application. Here, we are testing a stream-
ing application, such as Netflix. We prompt GPT-4
to generate ten suitable names for the Chinese TV
series My Own Swordsman, using the M1, M2, and M3
prompting modes. Next, three Chinese co-authors as-
sess the generated names with respect to their cultural
adequacy. According to our evaluation, all three modes
of prompting can instruct GPT-4 to generate 10 fake
names for My Own Swordsman. Specifically, the names
generated by each prompt align with the background
of the show and display full culture adequacy. For

example, eight names from the M1 prompt are suitable
for our TV show, such as 风流剑痴, 清风子, and 月影
红. From our Chinese analysts’ view, 风流剑痴, which
means “A handsome swordsman who is crazy for love,”
is considered the best one, while also being highly
consistent with the mix of ancient culture and humor
that characterizes the show.

Recently, several Chinese LLMs have been devel-
oped by the research divisions of companies such as
Baidu and Alibaba. For further evaluation, we employ
the same M1 prompt with two Chinese LLMs, ERNIE
Bot and Qwen. We find that GPT-4 performs better
than these two LLMs. Overall, although GPT-4 is not
a Chinese LLM, it is the better choice for Chinese
software testers if they want to obtain relevant fake
data with respect to Chinese language and culture.

4.1.2. Case study: Adequacy for low-resource languages.
In this case study, we are testing a travel application,
such as TripAdvisor. We request GPT-4 to generate
tourist attractions in Sri Lanka in Sinhalese, with
M1 and M2 prompting modes. We observe that the
generated results often include non-existent places.
The following text presents a generated output where
the locations are completely hallucinated:‘අරැගෙබ‍්’
,‘අරැගම‍්ෙබ‍් කුමැර අවුස විහාරය’,‘අරැගන‍්ෙබ‍්
කුමැර ෙවනිකාව’,‘දුක‍්ඛාෙගාඩ ලංවය’.We believe
that the primary reason for this poor performance
lies in the limited training of GPT-4 with Sinhalese
text. To produce a more satisfactory output, the model
would require training on a large volume of Sinhalese
data, which is likely missing in the OpenAI training
dataset. Overall, because of poor tokenization and lack
of training data in Sinhalese, the generated data is of
low quality. This case study highlights the limitation of
our approach for low-resource languages. However, for
all the other application domains with high-resource
languages, we observe strong domain adequacy, in-
cluding for Chinese, French, Hindi, Portuguese, and
Spanish.

Answer to RQ1

LLMs are able to generate high-quality test data.
They successfully capture the application domain
as well as the cultural and linguistic constraints.
This is good since software systems are designed
and embedded in countries and cultures all over
the world, all tested with the same rigor.

4.2. RQ2: Executability
We now focus on M2 and M3 prompts to evaluate
the executability of the code generated by the LLM.

4

https://www.netflix.com/se-en/
http://research.baidu.com/Blog/
https://damo.alibaba.com/
https://www.tripadvisor.com/

We have performed 17 M2 and 25 M3 prompts, and
in 29/42 cases, we obtain executable code. We now
discuss two interesting case studies.

4.2.1. Case study: Portuguese food and wine pairing.
We aim to generate Ruby code that produces random,
fake data, to test a food recommendation system such
as Vivino. In this context, software developers expect
the data to be realistic and correspond to culturally
adequate suggestions. Ideally, the data constraints are
explicit predicates in code that can be checked. We
study the extent to which GPT-4 is able to generate an
executable data constraint related to pairings between
Portuguese food and wine, using the faker Ruby
library (M3).

Listing 1 shows a snippet of the test data gen-
erator synthesized by GPT-4 that implements this
data constraint. Within Portuguese dining, red wines
are typically paired with meat, while white wines are
paired with fish. On line 25 of the listing, the wine type
is checked at runtime against the food type. The pair
is kept if it complies with the wine-pairing constraint.
This example shows that the capability of the model
is two-fold: 1) it is aware of wine-pairing conventions,
and 2) it is able to embed wine-pairing constraints in
code. In total, we had success in generating executable
faker code, and remarkably also found executable
data constraints regarding food and wine types em-
bedded in the generated code.

4.2.2. Case study: Data Constraint in Farsi poetry -
Testing applications using right-to-left scripts. In this
case study, we are testing a web publishing appli-
cation that should support right-to-left scripts with
constraints on the size of each line. For this, we employ
the M2 mode to synthesize executable Java code that
generates Farsi poetry in Masnavi style [3]. This type
of poetry is written from right-to-left, and the lines
of the poem should have approximately the same
length. For this experiment, we use the following M2
prompt: “Generate a Java program without using any
library that generates Farsi poem in Masnavi style
as test data.” The result is a Java application that
successfully executes and generates two lines in Farsi.
First, میسویم‘ کسی دل در که - میرویم کسی یاد ,’به and
second, هموار‘ میبرد خود با که - روزگار آن یاد .’به The
text is written in Farsi, which means it is right-to-left
as expected. It also consists of lines with almost the
same length. One limitation is that the generated text
does not follow the rhythmic patterns of Farsi poetry,
but we consider this constraint beyond the scope of the
considered domain adequacy. Overall, this case study
confirms that the LLM is able to generate executable

1 require 'faker'
2
3 class PortuguesePairingGenerator
4 PORTUGUESE_WINES = {
5 'Vinho Verde' => :white,
6 'Alvarinho' => :white,
7 'Vinho Alentejo' => :red,
8 'Porto' => :red,
9 'Madeira' => [:red, :white]

10 }
11
12 PORTUGUESE_FOODS = {
13 'Bacalhau a bras' => :fish,
14 'Caldo verde' => :vegetable,
15 'Francesinha' => :meat,
16 'Arroz de Pato' => :meat,
17 'Sardinhas assadas' => :fish
18 }
19
20 def self.generate
21 wine, type = PORTUGUESE_WINES.to_a.sample
22 food, food_type = PORTUGUESE_FOODS.to_a.sample
23
24 # Pair white wine with fish and red wine with meat
25 if (type == :white && food_type == :fish)

|| (type == :red && food_type == :meat)
26 puts "Pair the #{wine} wine with #{food}."
27 else
28 generate
29 end
30 end
31 end
32
33 # Generate a pairing
34 PortuguesePairingGenerator.generate

Listing 1. Wine-pairing test data generator, generated by
an LLM, with an embedded wine-pairing data constraint. In
this example, we prompt GPT-4 to generate Ruby code with
method M3: “(...) Please create a custom test data generator
that generates wine-pairings between Portuguese wines and
Portuguese foods.”

code that produces proper Farsi text, which can be
useful for testing web applications displaying right-to-
left text.

Answer to RQ2

LLMs are able to synthesize ready-to-use programs
for generating test data. They are able to reconcile
the dual constraints of generating adequate test
data in the considered domain, and generating
source code that compiles and executes in a given
programming language.

4.3. RQ3: Compatibility with Existing Faking
Libraries
For this RQ, we prompt the LLM to extend an
existing faking library, and integrate this extended
library into the test suite of a real-world Java project.
We target the test suite of a project called sakai,
which is an open-source, feature-rich learning man-

5

https://www.vivino.com/ES/en/
https://github.com/faker-ruby/faker

1 // LLM-generated extension of java-faker for Merlin
2 package com.github.javafaker;
3
4 public class Merlin {
5 private final Faker faker;
6
7 protected Merlin(Faker faker) {
8 this.faker = faker;
9 }

10
11 public String character() {
12 return faker.fakeValuesService().resolve(
13 "merlin.characters", this, faker);
14 }
15
16 public String quote() {
17 return faker.fakeValuesService().resolve(
18 "merlin.quotes", this, faker);
19 }
20 }
21 ..
22
23 // Excerpt from the ElasticSearchTest class of sakai
24 public class ElasticSearchTest {
25 String resourceName =
26 - faker.name().name() + " key keyboard";
27 + faker.merlin().character() + " key keyboard";
28
29 ...
30 @Test
31 public void testGetSearchSuggestions() {
32 String[] suggestions = elasticSearchService
33 .getSearchSuggestions("keyboard", siteId, false);
34 List suggestionList = Arrays.asList(suggestions);
35 assertTrue(suggestionList.contains(resourceName));
36 }
37 }

Listing 2. Lines 1-20: An extension of the java-faker library
generated by the LLM to produce characters and quotes from
the TV show Merlin. Lines 23-37: An excerpt from a test case
in the project sakai which uses the java-faker library to
generate fake resource names. We replace the existing call to
generate fake names (line 26) with names from characters in
Merlin (line 27).

agement system. sakai already uses the java-faker
library in multiple test classes for generating fake
names and placeholder text inputs. For example, lines
25 and 26 of Listing 2 show how the faker is used
within the test class ElasticSearchTest to generate
a fake name for a Resource object, such as Jane
Doe key keyboard. Then, this object is used for test-
ing the search implementation within the test case
testGetSearchSuggestions (lines 30-36) to obtain
search suggestions that contain the strings key and
keyboard from an ElasticSearch service. The assertion
on line 35 verifies that the suggestion list includes
the recently created resource name, Jane Doe key
keyboard.

We prompt the LLM in M3 mode to generate a
java-faker-style generator that produces character
names and quotes from the TV show Merlin. Per our

expectations, the LLM generates code that follows the
structure of the java-faker library, specifically a faker
class called Merlin.java (lines 1 to 20 in Listing 2),
and a merlin.yml file containing character names
and quotes. Moreover, the two generated files follow
the same pattern as the existing generators within
java-faker. Next, we extend java-faker with these
two new files, and replace the existing java-faker
version in sakai with this extended version. We update
the test class ElasticSearchTest to generate fake
names from characters in Merlin, as illustrated on
lines 26 and 27 of Listing 2. Finally, we compile the
project and execute the test suite, which now uses this
extended faker.

Within the class ElasticSearchTest, 3 test cases
call the LLM-generated faker, and 5 assertions assess
behavior using this fake data. We observe that the
complete end-to-end integration works seamlessly: 1)
the test suite compiles and runs, and 2) all the test
cases successfully pass with the extended java-faker
library. From a testing perspective, using a resource
called Uther Pendragon from the generated Merlin
faker is as effective as using a conventional “Jane
Doe” resource. This is strong evidence that the LLM is
capable of successfully generating fakers that are ready
to be used by developers, while engaging them even
more with their tasks.

Answer to RQ3

LLMs encode knowledge about popular faking li-
braries, used to test thousands of software projects.
This knowledge can be leveraged to generate new
fakers, directly interoperable with test suites. To
the best of our knowledge, our paper is the first to
bridge the creative power of LLMs and the hard
engineering constraints of data faking.

5. Related Work
Large Language Models have found application in
various phases of software engineering, from the gen-
eration of specifications to the maintenance of legacy
software [2]. Yet there are caveats to the use of
LLMs in software engineering tasks, owing to their
unpredictability, and issues such as potential data
leakage [4]. Ouyang et al. [5] highlight that the non-
determinism of LLMs can negatively impact code
generation, producing semantically and syntactically
different, potentially incorrect, code based on hyper-
parameter configurations. In the same vein, Poesia et
al. [6] propose an approach to enforce constraints on
the code generated by LLMs, including syntax and
variable typing. In this paper, we leverage the creative

6

https://github.com/DiUS/java-faker
https://www.imdb.com/title/tt1199099

power of LLMs to synthesize wide-ranging test data,
and their programming power to produce executable
test data generators.

Several studies have experimented with LLMs and
machine learning models as tools to aid software
testing, including the automated generation of unit
tests [7]. MockSniffer [8] uses machine learning to
recommend components that may be substituted by
mocks within unit tests. QTypist [9] uses LLMs to
generate context-aware text inputs for testing mobile
application interfaces. Tan and colleagues explore the
use of Recurrent Neural Networks (RNNs) [10] and
LLMs [11] for generating synthetic, representative test
data for the Norwegian national population registry.
Generative Adversarial Networks (GANs) have been
used to anonymize test data used in the healthcare
domain [12]. Similar to these studies, we utilize LLMs
to automatically produce realistic synthetic test data.
A core novelty of our work is the use of LLMs in the
context of fakers, to automatically generate executable
code that produces test data.

Many researchers have explored the cultural
(in)adequacies exhibited by LLM outputs. Cao and
colleagues [13] discover that ChatGPT performs
poorly in non-American contexts. Naous et al. [14]
analyze the cultural adaptability of LLMs, concluding
that Arabic LLMs default to Western cultures. Chen
et al. [15] report on the inadequate performance of
several LLMs in understanding Chinese humor, in-
cluding the detection of punchlines. In this work, we
have explored diverse dimensions of cultural adequacy
within test data. While the LLM performs very well
at data generation, we observe that cultural adequacy
varies depending on the task and the language used
for prompting.

6. Conclusion
In this paper, we have addressed the original prob-
lem statement of generating test data generators with
LLMs. To validate this far-reaching idea, we have
performed an in-depth study into the capabilities of
LLMs for generating test data, with attention to both
hard software testing requirements and soft cultural
requirements such as cultural adequacy. Our exper-
imental results clearly indicate that current LLMs
are able to succeed in this task. Over 63 prompts,
we successfully obtain a large majority of good data
generators, that can execute and produce valuable
test data. As a final proof-of-concept, we integrate an
LLM-generated data faker in the test suite of a mature
and well-tested Java project. The complete success of
this PoC shows that LLM-generated test fakers can

support serious and engaging software testing. Overall,
our research opens a promising avenue for the use
of generative models for generating data that is both
adequate for testing and is culturally relevant.

7. REFERENCES
1. D. Tiwari, T. Toady, M. Monperrus, and B. Baudry,

“With Great Humor Comes Great Developer Engage-
ment,” in 2024 IEEE/ACM 46th International Confer-
ence on Software Engineering: Software Engineering
in Society (ICSE-SEIS), IEEE, 2024.

2. I. Ozkaya, “Application of large language models to
software engineering tasks: Opportunities, risks, and
implications,” IEEE Software, vol. 40, no. 3, pp. 4–8,
2023.

3. W. M. Thackston, A millennium of classical Persian
poetry: a guide to the reading & understanding
of Persian poetry from the tenth to the twentieth
century. Ibex Publishers, Inc., 1994.

4. J. Sallou, T. Durieux, and A. Panichella, “Breaking
the Silence: the Threats of Using LLMs in Software
Engineering,” in 2024 IEEE/ACM 46th International
Conference on Software Engineering: New Ideas and
Emerging Results (ICSE-NIER), IEEE, 2024.

5. S. Ouyang, J. M. Zhang, M. Harman, and M. Wang,
“Llm is like a box of chocolates: the non-determinism
of chatgpt in code generation,” arXiv preprint
arXiv:2308.02828, 2023.

6. G. Poesia, O. Polozov, V. Le, A. Tiwari, G. Soares,
C. Meek, and S. Gulwani, “Synchromesh: Reliable
code generation from pre-trained language models,”
arXiv preprint arXiv:2201.11227, 2022.

7. M. Schäfer, S. Nadi, A. Eghbali, and F. Tip, “An em-
pirical evaluation of using large language models for
automated unit test generation,” IEEE Transactions
on Software Engineering, 2023.

8. H. Zhu, L. Wei, M. Wen, Y. Liu, S.-C. Cheung,
Q. Sheng, and C. Zhou, “Mocksniffer: Characteriz-
ing and recommending mocking decisions for unit
tests,” in Proceedings of the 35th IEEE/ACM Interna-
tional Conference on Automated Software Engineer-
ing, pp. 436–447, 2020.

9. Z. Liu, C. Chen, J. Wang, X. Che, Y. Huang, J. Hu,
and Q. Wang, “Fill in the blank: Context-aware auto-
mated text input generation for mobile gui testing,”
in 2023 IEEE/ACM 45th International Conference on
Software Engineering (ICSE), pp. 1355–1367, IEEE,
2023.

10. R. Behjati, E. Arisholm, M. Bedregal, and C. Tan,
“Synthetic test data generation using recurrent neural
networks: a position paper,” in 2019 IEEE/ACM 7th
International Workshop on Realizing Artificial Intel-

7

ligence Synergies in Software Engineering (RAISE),
pp. 22–27, IEEE, 2019.

11. C. Tan, R. Behjati, and E. Arisholm, “Enhancing
synthetic test data generation with language models
using a more expressive domain-specific language,”
in IFIP International Conference on Testing Software
and Systems, pp. 21–39, Springer, 2023.

12. E. Piacentino and C. Angulo, “Generating fake data
using gans for anonymizing healthcare data,” in In-
ternational Work-Conference on Bioinformatics and
Biomedical Engineering, pp. 406–417, Springer, 2020.

13. Y. Cao, L. Zhou, S. Lee, L. Cabello, M. Chen, and
D. Hershcovich, “Assessing cross-cultural alignment
between chatgpt and human societies: An empirical
study,” arXiv preprint arXiv:2303.17466, 2023.

14. T. Naous, M. J. Ryan, and W. Xu, “Having beer
after prayer? measuring cultural bias in large language
models,” arXiv preprint arXiv:2305.14456, 2023.

15. Y. Chen, Z. Li, J. Liang, Y. Xiao, B. Liu, and Y. Chen,
“Can pre-trained language models understand chinese
humor?,” in Proceedings of the Sixteenth ACM Inter-
national Conference on Web Search and Data Mining,
pp. 465–480, 2023.

Benoit Baudry is a Professor in Software Technology
at the Université de Montréal. His research focuses on
automated software engineering, software diversity and
software testing. He favors exploring code execution over
code on disk. He received his PhD in 2003 from the Uni-
versity of Rennes, France. He was a research scientist at
INRIA (France) from 2004 to 2017, and a Professor at the
KTH Royal Institute of Technology (Sweden) from 2017
to 2023. Contact him at benoit.baudry@unmontreal.ca.

Khashayar Etemadi is a Ph.D. student at KTH Royal
Institute of Technology, Sweden. He received his MSc
and BSc degrees in Software Engineering from Sharif
University of Technology, Iran. His research is focused on
explainable software bots, ML4SE, and program analysis.
Contact him at khaes@kth.se.

Sen Fang received the master degree in electronics and
communication engineering from Central China Normal
University in 2020. He is now a research engineer at KTH
Royal Institute of Technology. His research interests lie
in the intersection of software engineering and machine
learning, particularly LLMs for code. Contact him at
senf@kth.se.

Yogya Gamage is a research engineer at KTH Royal
Institute of Technology, Stockholm, Sweden. Her current
research focuses on software hardening, software supply
chain security, and program repair. She received a bach-

elor’s degree in computer science and engineering from
the University of Moratuwa, Sri Lanka. Contact her at
yogya@kth.se.

Yi Liu is a research assistant at KTH Royal Institute of
Technology, Stockholm, Sweden. Her research interests
include the intersection between blockchain and security.
She received a bachelor’s degree from Sichuan University
and is now pursuing a master’s degree at Stockholm
University. Contact her at raphina@kth.se.

Yuxin Liu is a Ph.D. student at KTH Royal Institute of
Technology, Stockholm, Sweden. Her research interests
include software engineering, software analysis, and soft-
ware package management. Yuxin received her MSc in
software engineering from Harbin Institute of Technology.
Contact her at yuxinli@kth.se.

Martin Monperrus is Professor of Software Technol-
ogy at KTH Royal Institute of Technology, Sweden.
His research lies in the field of software engineering
with a current focus on automatic program repair, AI
on code and program hardening. He received a Ph.D.
from the University of Rennes, and a Master’s degree
from Compiègne University of Technology. Homepage:
https://www.monperrus.net/martin/

Javier Ron is a Ph.D. student at KTH Royal Institute of
Technology. He received his BSc degree from ESPOL Uni-
versity in Ecuador and his MSc degree from KTH Royal
Institute of Technology. His research interest lies in the
intersection of software engineering, distributed systems
and game development. Contact him at javierro@kth.se.

André Silva is a Ph.D. student at KTH Royal Institute
of Technology, Stockholm, 11428, Sweden. His research
interests include the intersection of automatic program
repair and machine learning. Silva received his M.Sc.
in Computer Science from Instituto Superior Técnico,
Universidade de Lisboa, Lisbon, Portugal. Contact him
at andreans@kth.se.

Deepika Tiwari is a Ph.D. student at KTH Royal In-
stitute of Technology, working on software testing. Her
research focuses on automatic software test generation,
production monitoring, and software humor. Contact her
at deepikat@kth.se.

8

	Introduction
	Test Data Generation with LLMs
	Overview
	M1: Directly Generate Test Data
	M2: Generate Executable Test Data Generators
	M3: Generate Complete Interoperable Test Fakers

	Experimental Methodology
	RQ1 Domain adequacy
	RQ2 Executability
	RQ3 Interoperability

	Experimental Results
	RQ1: Data Adequacy
	Case study: Adequacy of Chinese data for testing a streaming application.
	Case study: Adequacy for low-resource languages.

	RQ2: Executability
	Case study: Portuguese food and wine pairing.
	Case study: Data Constraint in Farsi poetry - Testing applications using right-to-left scripts.

	RQ3: Compatibility with Existing Faking Libraries

	Related Work
	Conclusion
	REFERENCES
	REFERENCES
	Biographies
	Benoit Baudry
	Khashayar Etemadi
	Sen Fang
	Yogya Gamage
	Yi Liu
	Yuxin Liu
	Martin Monperrus
	Javier Ron
	André Silva
	Deepika Tiwari

