
IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021 563

Effective Prediction of Bug-Fixing Priority via
Weighted Graph Convolutional Networks

Sen Fang , You-shuai Tan, Tao Zhang , Zhou Xu , and Hui Liu

Abstract—With the increasing number of software bugs, bug
fixing plays an important role in software development and main-
tenance. To improve the efficiency of bug resolution, developers
utilize bug reports to resolve given bugs. Especially, bug triagers
usually depend on bugs’ descriptions to suggest priority levels
for reported bugs. However, manual priority assignment is a
time-consuming and cumbersome task. To resolve this problem,
recent studies have proposed many approaches to automatically
predict the priority levels for the reported bugs. Unfortunately,
these approaches still face two challenges that include words’
nonconsecutive semantics in bug reports and the imbalanced data.
In this article, we propose a novel approach that graph convolu-
tional networks (GCN) based on weighted loss function to perform
the priority prediction for bug reports. For the first challenge,
we build a heterogeneous text graph for bug reports and apply
GCN to extract words’ semantics in bug reports. For the second
challenge, we construct a weighted loss function in the training
phase. We conduct the priority prediction on four open-source
projects, including Mozilla, Eclipse, Netbeans, and GNU compiler
collection. Experimental results show that our method outperforms
two baseline approaches in terms of the F-measure by weighted
average of 13.22%.

Index Terms—Bug report, graph convolutional network (GCN),
priority prediction.

I. INTRODUCTION

BUG resolution plays an important role in software main-
tenance. Unfortunately, due to a large number of bugs

appearing in software products, bug resolution has become a
time-consuming and difficult task [1]. For example, according to
our investigation, there are more than 10,000 bug reports submit-
ted to Mozilla project from January 1, 2021, to March 8, 2021,

Manuscript received November 13, 2020; revised March 8, 2021; accepted
April 16, 2021. Date of publication May 19, 2021; date of current version
June 1, 2021. This work was supported in part by the Science and Technology
Development Fund of Macau, Macau SAR under Grant 0047/2020/A1, in part by
the China Postdoctoral Science Foundation, China under Grants 2017M621247
and 2020M673137, in part by the Faculty Research Grant Projects of MUST,
Macau SAR under Grant FRG-20-008-FI, and in part by the Natural Science
Foundation of Heilongjiang Province under Grant LH2019F008. Associate
Editor: R. Gao. (Sen Fang and You-shuai Tan contributed equally to this work.)
(Corresponding author: Tao Zhang.)

Sen Fang, You-shuai Tan, and Tao Zhang are with the Faculty of Infor-
mation Technology, Macau University of Science and Technology, Macau
999078, China (e-mail: fangsen1996@gmail.com; tanyoushuai@hrbeu.edu.cn;
tazhang@must.edu.mo).

Zhou Xu is with the School of Big Data and Software Engineering, Chongqing
University, Chongqing 400030, China (e-mail: zhouxullx@cqu.edu.cn).

Hui Liu is with the School of Computer Science and Technology, Beijing
Institute of Technology, Beijing 100081, China (e-mail: liuhui08@bit.edu.cn).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TR.2021.3074412.

Digital Object Identifier 10.1109/TR.2021.3074412

which means that Mozilla project can receive more than 150 new
bug reports a day on average. To locate bugs and improve the
next release, most of large-scale open-source software project
teams utilize bug tracking systems (e.g., Bugzilla1 and Jira2)
to manage bugs [2] by submitting and analyzing bug reports.
Therefore, more and more bug reports are submitted to bug
tracking systems [3]. As a result, some serious bugs cannot be
fixed in time due to the heavy workload and limited time [4]. To
avoid this problem, bug triager usually prioritize the bug-fixing
process, which can help them fix the bugs with the highest
priority. Specifically, as an experienced developer, bug triager
first determines if a new bug is an enhancement or a valuable
new problem according to the content of its corresponding bug
report. If this bug is, the bug triager will prioritize it and assign
a bug fixer to resolve it. In Bugzilla, the priority is defined from
P1 to P5, where P1 stands for the highest priority and P5 stands
for the lowest one. Although manual priority assignment can
get high-quality classification, it is tedious and requires a lot
of manpower. Therefore, how to build an effective model for
automated priority prediction become a big problem.

In order to overcome this problem, some automated ap-
proaches have been proposed to perform the priority predic-
tion [2], [5], [6]. Tian et al. [2] proposed a linear regression model
named DRONE which makes full use of factors in bug reports
and utilizes thresholding approach to deal with imbalanced data.
Umer et al. [5] used the convolutional neural network (CNN)
to implement an automated priority assignment model named
cPur, where CNN is adept at capturing syntactic and semantic
information in local consecutive word sequences. Even though
these approaches realize the bug priority prediction, they still
face two challenges. First, the prediction results of DRONE are
still influenced by imbalanced data because it cannot effectively
predict some priority classes with small-sized samples. Second,
CNN ignores global words’ co-occurrence in documents which
contain long-distance and nonconsecutive semantics [7].

To overcome the above drawbacks, we propose a novel
framework named Ppriority prediction by using weighted graph
convolutional networks (PPWGCN) to realize automated prior-
ity prediction, where graph convolutional network (GCN) for
text classification was first proposed by Yao et al. [8]. Our
approach considers five elements of bug reports that may help
to recognize the priority levels (P1–P5). For each given bug,
these elements include the severity of the bug (severity), the

1[Online]. Available: https://www.bugzilla.org/
2[Online]. Available: https://www.atlassian.com/software/jira

0018-9529 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

https://orcid.org/0000-0002-9918-7180
https://orcid.org/0000-0002-6272-4069
https://orcid.org/0000-0003-0119-927X
https://orcid.org/0000-0001-6223-2542
mailto:fangsen1996@gmail.com
mailto:tanyoushuai@hrbeu.edu.cn
mailto:tazhang@must.edu.mo
mailto:zhouxullx@cqu.edu.cn
mailto:liuhui08@bit.edu.cn
https://doi.org/10.1109/TR.2021.3074412
https://www.bugzilla.org/
https://www.atlassian.com/software/jira

564 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

product which is affected by the bug (product), the component
which the bug affects (component), the particular information of
the bug (description), and the summary of the bug (summary).
Then, we apply natural language processing (NLP) techniques to
preprocess bug reports and use the preprocessed data to construct
a heterogeneous graph which contains word nodes and document
nodes. By completing the above steps, we transform the priority
prediction problem into a node classification problem. Next,
to capture global word co-occurrence information and make
good priority prediction, we utilize GCN [9] to model the
heterogeneous graph. The reason is that GCN can propagate
the priority class-label information to the entire graph well, thus
our heterogeneous graph preserves global word co-occurrence
information. Since bug reports with different priority levels are
quite imbalanced (see Section IV), we construct a weighted cross
entropy loss function by introducing label penalty and use it to
deal with the imbalanced problem in bug reports.

To evaluate the effectiveness of our approach, we choose state-
of-the-art approaches-DRONE [2] and cPur [5] as baselines. We
conduct experiments on four open-source repositories, including
Mozilla,3 Eclipse,4 Netbeans,5 and GNU compiler collection
(GCC).6 The experimental results show that our method outper-
forms two baselines approaches in terms of the F-measure by
weighted average of 13.22%. Moreover, similar to the previous
work [8], our approach can still perform well with less training
data (see Section IV).

To help researchers reproduce our approach quickly, we open
all data, source code, and results at GitHub7.

Our contributions are summarized as follows.
1) To the best of our knowledge, we are the first to leverage

the global words’ co-occurrence in predicting the priority
of bug reports.

2) A novel approach is proposed to handle the imbalance of
bug reports.

3) We conduct the extensive experiments to evaluate the
performance of our approach on four large-scale open-
source projects, including Mozilla, Eclipse, Netbeans, and
GCC. The experimental results illustrate that our approach
outperforms baseline approaches.

The remainder of this article is as follows. Section II describes
the background and our motivations. Section III introduces the
details of our approach and uses a bug report as an example.
Section IV shows how to perform experiments and analyzes the
results. In Section V, we discuss several threats to our approach.
We present some related works in Section VI. In Section VII,
we conclude the article and discuss future work.

II. BACKGROUND AND MOTIVATIONS

In this section, we introduce background knowledge, includ-
ing bug reporting, priority prediction, and GCN. After that, we
explain the motivation of our work.

3[Online]. Available: https://bugzilla.mozilla.org/
4[Online]. Available: https://bugs.eclipse.org/
5[Online]. Available: https://bz.apache.org/netbeans/
6[Online]. Available: https://gcc.gnu.org/
7[Online]. Available: https://github.com/TanYoushuai123/PPWGCN

TABLE I
MAIN ELEMENTS IN BUGZILLA BUG REPORTS

A. Bug Reports

Bug tracking systems are established for developers to get
the feedback which helps to fix bugs [10]. Although both users
and developers utilize these systems to submit their feedback in
form of the bug report, different bug tracking systems have their
own ways to define the priority for the bug report [11]. Thus, to
maintain the consistency, we only focus on bug reports which
are managed by Bugzilla, because it is one of the most popular
bug tracking systems.

To be more visualized, Fig. 1 illustrates an eclipse bug report
which contains basic elements, such as description, summary,
comment, product, component, priority, severity, assignee, and
reporter. We describe the main elements of bug reports extracted
from Bugzilla in Table I. We also explain the basic concept
of each one in this table helping readers easily understand the
contents of bug reports. Especially, only name information is
included in “Reporter” and “Assignee” elements in the bug
report. Considering that we use four open-source projects as
datasets in the experiment, names in these two elements are
full of randomness. Thus, it is difficult to extract meaningful
semantic information from them. Besides, the information in
“comment” element in the bug report is not always related to
this bug, such as the example in Table 1. Therefore, we use the
remaining five elements (“Summary,” “Product,” “Component,”
“Severity,” and “Description”) of the bug report to achieve bug
report priority classification, all of which have sufficient text
information and are helpful to train PPWGCN.

B. Priority Prediction

When a reporter submits a bug report, developers work
together to fix the submitted bug. First of all, a bug triager
determines whether the new bug is an enhancement or a new

https://bugzilla.mozilla.org/
https://bugs.eclipse.org/
https://bz.apache.org/netbeans/
https://gcc.gnu.org/
https://github.com/TanYoushuai123/PPWGCN

FANG et al.: EFFECTIVE PREDICTION OF BUG-FIXING PRIORITY VIA WEIGHTED GRAPH CONVOLUTIONAL NETWORKS 565

Fig. 1. Example of Eclipse bug report. We pixelate sensitive information such as bug report id and name.

problem that should be resolved. Then the given bug is assigned
to a developer to resolve it. However, developers are always
overwhelmed with massive bug reports [3]. If all the bug reports
have the same priority, the bug-fixing process for several serious
problems may be postponed. Thus, developers prioritize the
bug reports to raise efficiency. In Bugzilla, priority labels are
classified as P1, P2, P3, P4, and P5, where P1 represents the
highest priority while P5 stands for the lowest one. For example,
Fig. 1 describes an issue that the button does not support WRAP.
Obviously the developer (i.e., the triager) thinks that this is a
minor problem so that the priority level is set to P4. Thus, the
reported issue will be resolved later than other more serious bugs
with higher priority level, i.e., P1, P2, and P3.

C. Graph Convolutional Networks

Many scholars have paid attention to GCN recently [12]–[14].
It is difficult to generalize well-established neural models (e.g.,
RNN, CNN) on arbitrarily structured graphs. To address this
problem, several papers have constructed parameterized filters
using graph convolutions from spectral graph theory to perform
in a neural network [9], [15], [16]. Kipf and Welling [9] proposed
a novel graph neural network model based on framework of
spectral graph convolutions, called GCN. This model is sim-
ple and allows for high predictive accuracy and fast training,
which achieves state-of-the-art classification results on many
benchmark graph datasets. Moreover, GCN has been applied to
NLP tasks, such as machine translation [17], relation classifica-
tion [18], and semantic role labeling [19].

Can GCN be used for text classification? Yao et al. [8]
proposed a novel model for text classification called text GCN.
They utilized the corpus to build a heterogeneous graph and
adopt GCN to perform a nodes classification, which outperforms
a lot of baseline approaches.

D. Motivation

As the number of bug reports increases, this may overwhelm
developers [3]. Thus, a bug report with a clear priority class-label
can help developers to solve the corresponding bug quickly [2].
However, it is boring and bored for developers to manually label
the priority for each bug report. Therefore, several approaches
have been proposed to automatically predict the priority of bug
reports [2], [5], [6]. All these models can only achieve good
accuracy for the priority class with large-sized samples. But for
the priority class with small-sized samples, they almost cannot
make accurate predictions [2]. Except for the imbalance of bug
reports’ distribution, another reason is that these approaches pay
more attention to the semantic information in the local consec-
utive words of the bug report, but may ignore the long-distance
and nonconsecutive semantic information from global word
co-occurrence. In the text classification task, a crucial step is the
text representation [8]. Hence, in the bug report priority classi-
fication, a sufficient text representation for the bug report can
dramatically improve the performance of the model. Compared
to local semantic information, global semantic information can
help models to understand a bug report completely, which is
beneficial for models to learn the semantic representation of
the bug report [20]. Besides, lacking of the global semantic
information makes models cannot accurately recognize the pri-
ority class-labels that have a small-sized samples in many bug
reports [8]. Therefore, to construct a more effective model to
perform the priority prediction of bug reports is meaningful.

Driven by the above motivation and the success of GCN in
text classification, there is an idea that occurred in our mind—is
GCN suitable for the priority classification of bug reports? In our
view, we can regard each bug report as a document and apply
GCN to realize the priority classification for each document.
Compared with previous model [2], [5], [6], GCN can extract

566 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

Fig. 2. Schematic of PPWGCN. Nodes begin with “BR” are bug reports while others are words. Gray straight lines are word-word edges and black straight lines
are word-document edges. R(x) represents the word embedding or document embedding for x (depending on x is a word or document). Curves in different colors
mean the message flows in the GCN.

more sufficient global semantic information because it models
all of the words and documents in a heterogeneous graph. As
we all know, global semantic information is helpful for the
model to understand the deep meaning of documents [21], [22].
Furthermore, for the imbalanced data, we think this problem can
be alleviated by introducing the label penalty since it gives a rel-
atively small weight to the priority class-labels with large-sized
samples.

In this article, we actively explore how to use GCN to the
priority classification of bug reports. We propose our approach
and conduct a series of experiments to verify the effectiveness
of our proposed model.

III. METHODOLOGY

In this section, we describe the details of the proposed novel
framework PPWGCN for predicting the priority levels of bug
reports. We present here an overall framework of PPWGCN, and
we also describe it step by step.

A. Overview

To improve the performance of automated priority predic-
tion, we present a novel approach PPWGCN to conduct this
work. Fig. 2 shows the framework of our approach. The brief
introduction for each step of this approach is as follows.

1) We take the five elements of a bug report as a document and
employ the preprocessing method to reduce memory consump-
tion and improve the performance of the proposed algorithm,
which includes rare words removal and stop word removal.

2) We build a heterogeneous graph whose nodes represent
both documents and words. We utilize pointwise mutual infor-
mation (PMI) to calculate the word-word edges and TF-IDF to
get the word-document edges.

3) We feed this graph into a GCN to train a classifier with
the supervision of a weighted loss function. When completing

training process, we use this trained model to predict the priority
levels of the bug reports in our test dataset.

In the following sections, we describe the details of each step
in this framework. For easy to understand, we also take the bug
report shown in Fig. 1 as an example.

B. Preprocessing

We preprocess bug reports from four open-source projects (
i.e., Mozilla, Eclipse, Netbeans, and GCC) to verify the effi-
ciency of the proposed algorithm.

We describe the process by introducing the case. In Fig. 1,
notes that the bug report contains all five elements (i.e., de-
scription, summary, severity, component, and product). We first
combine them into one document, then adopt a preprocess to
clean it. We get our raw data as—button, does, not, support,
wrap, style, while, label, supports, wrap, style, request, wrap,
style, for, button, enhancement, swt, platform.

Then, we employ stop word removal to remove some words (
e.g., not, are, for) that nearly cannot make any contribution to the
performance of the algorithm. Moreover, rare words may reduce
the accuracy and efficiency of models in NLP domain [23], [24].
Thus, we remove the word whose occurrence frequency is less
than five. Finally, the abovementioned raw data are changed to
the following one—button, support, wrap, style, label, supports,
wrap, style, request, wrap, style, button, enhancement, swt,
platform.

C. Text Graph Convolutional Network for Priority Prediction

We first build a heterogeneous graph G = (V,E) after pre-
processing bug reports, where V and E represent nodes and
edges, respectively. We take both words and documents (i.e.,
bug reports) as nodes. Thus, the number of nodes contains
two parts: one is the sum of the number of documents in the
corpus (i.e., open-source project), and another one is the size

FANG et al.: EFFECTIVE PREDICTION OF BUG-FIXING PRIORITY VIA WEIGHTED GRAPH CONVOLUTIONAL NETWORKS 567

of the vocabulary [i.e., the number of unique words (UWs)].
In our heterogeneous graph, there are three different types of
edges, including document–document edge, word-word edge,
and word-document edge. For document-document edges, we
generally set the corresponding values to zero. For word-word
edges, we utilize a sliding window on every document to gather
the word frequency of co-occurrence, which captures the global
word co-occurrence information. PMI is a useful measure for
word associations, thus, we use it to calculate weights of word-
word edges. The PMI value of two words (i, j) is calculated
as

PMI(i, j) = log
p(i, j)

p(i)p(j)
(1)

p(i, j) =
#W (i, j)

#W
(2)

p(i) =
#W (i)

#W
(3)

where #W (i, j) stands for the number of specific sliding win-
dows that contain both i and j,#W is the total number of specific
windows in all the documents, and #W (i) is the number of
specific sliding windows in all the documents which contain the
word i. Positive PMI values indicate strong semantic corrections
of words in all documents, while negative PMI values imply
weak corrections. For word-document edges, we use TF-IDF
to compute the relevancy between a word and a document. We
define it as follows:

TF-IDFi,j = tfi,j ×
(
1 + log

N

1 + df(j)

)
(4)

where i is a document and j is a word, tfi,j is the number of times
that j appears in i, IDF is logarithmically scaled inverse fraction
of the total number of documents that contain j. Formally, we
can define the edges between two nodes as

Ai,j =

⎧⎪⎪⎨
⎪⎪⎩

PMI(i, j) i, j are words, PMI(i, j) > 0
TF-IDFi,j i is document, j is word

1 i = j
0 otherwise.

(5)

After building this heterogeneous graph, we feed this graph
into a simple classifier model with two GCN layers

Z = softmax
(
ÃReLU

(
ÃXW0

)
W1

)
(6)

where Ã ∈ Rn×n = D− 1
2AD− 1

2 is the normalized symmetric
adjacency matrix, which is used to represents the relationship
between two nodes. Thus, we utilize Ã for propagation in our
GCN framework. A ∈ Rn×n is an adjacency matrix. To cap-
ture self-information, the diagonal elements of A are defined
as 1, which explains that the condition of i = j. D ∈ Rn×n

is a degree matrix, where Dii =
∑

j Aij . Z ∈ Rn×m2 is the
prediction made by our model; n is the total number of words
and documents; m2 is the number of classes (i.e., five priority
levels). In contrast to single-layer GCN, two-layer GCN enables
information to pass among nodes that have a maximum distance
of two steps. Therefore, the information can swap between
documents though we do not build document–document edges

directly [8]. For the first layer

L(1) = ReLU
(
ÃXW0

)
(7)

where ReLU is an activation function which is defined as

ReLU(x) = max(0, x). (8)

X ∈ Rn×n is our feature matrix which is an identity matrix. Our
input is a one-hot vector containing all words and documents.
W 0 ∈ Rn×m1 is a weight matrix, where m1 is the first hidden
size. For the second layer

L(2) = softmax
(
ÃL(1)W 1

)
(9)

where W 1 ∈ Rm1×m2 is the model parameter. The softmax is
defined as

softmax (xi) =
exp (xi)

Z (10)

Z =
∑
i

exp (xi) (11)

where xi is one of the five output values (i.e., P1, P2, P3, P4, and
P5). To deal with the imbalanced data, we adjust the loss function
by introducing label penalty. Our loss function is defined as

L = −
∑
d∈YD

F∑
f=1

Ydf lnZdfWf (12)

where YD is the training dataset, F is the number of priority
labels (which is equal to 5), Y is a label indicator matrix, and
Wf is weight of this label. The weight parameter is defined as

Wf =

{
0 Nf = 0

maxNi

Nf
Nf �= 0, i ⊆ F

(13)

where Nf is number of the label f in this data.
Although document and document have no direct edges, the

message of the bug report can be passed to any other bug reports
after two propagations, which means that this two-layer GCN
can effectively make the features of vertices in the same priority
label similar and keep simple. Therefore, we believe that our
approach is effective for priority prediction of bug reports.

IV. EXPERIMENT SETUP

In this section, we describe the experimental setup in detail.

A. Research Questions (RQs)

In this paper, we utilize two-layer GCN to implement the pri-
ority prediction. We answer three RQs to verify the effectiveness
of our approach.

RQ1: How effective is PPWGCN as compared with two
baseline methods—namely, DRONE and cPur?

Tian et al. [2] and Umer et al. [5] proposed competitive
DRONE and cPur for the priority prediction of bug report, re-
spectively. Therefore, to verify the effectiveness of our proposed
model, we choose DRONE and cPur as baselines to compare
with our proposed model.

RQ2: How effective is PPWGCN when we use different ratio
of the training dataset to train?

568 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

Yao et al. [8] found GCN can perform quite well with a low
ratio of the training dataset. For the priority prediction, there
are many bug reports without corresponding labels. Thus, this
characteristic of GCN can make contributions to the priority
prediction. The answer to this research question can verify
whether PPWGCN is equally effective when giving it a few
bug reports to train.

RQ3: Can our weighted loss function cope with the imbal-
anced data?

Our data is quite imbalanced, which is the same as the ex-
perimental data in other research works [2], [5]. Imbalanced
data present an obstacle to experiments [25]. Specifically, the
model tends to learn the features of the priority classes that have
large-sized samples [26], thus, the prediction accuracy of these
priority classes may be nearly 100%. Meanwhile, the accuracy
of the priority classes with small-sized samples may be close to
0. To alleviate the influence of the imbalanced data, we build
a weighted loss function by introducing label penalty to deal
with this problem. The answer to this research question verifies
whether the weighted loss function is helpful for our approach.

B. Experiment Setting

1) Dataset: To demonstrate the effectiveness of our ap-
proach, we perform a series of experiments on bug reports
from four large-scale open-source projects, including Mozilla,
Eclipse, Netbeans, and GCC. We collect the bug reports from
February 2000 to September 2020, and treat the bug reports with
the same priority level as a group. However, we found that the
data are quite imbalanced, as shown in Table II. For example,
the number of P3 is 90,026 in Eclipse while P4 only has 2828
entities. Besides, in Table III, we show some other information
about the data we collected, including the number of UWs and
the average length of the bug reports (BRs). We select 50% of
data as our training dataset and the other 50% for testing, which
is the same as DRONE. We split our dataset 30 times to alleviate
the impact of random partition.

2) Evaluation Measures: To measure the accuracy of PP-
WGCN and analyze results of our experiments, we choose the
F-measure (F) as our evaluation measures [27]. Precision (P),
recall (R), and F-measure for a priority Pi can be defined as

P (Pi) =
TP

TP + FP
(14)

R (Pi) =
TP

TP + FN
(15)

F (Pi) =
2 ∗ P ∗R
P +R

(16)

where TP (true positive) is the number of bug reports with
class-label Pi which are predicted correctly, FP (false positive)
means the number of bug reports with other class-labels which
are predicted as class-labelPi,FN (false negative) is the number
of bug reports with class-label Pi which are predicted as other
class-labels.

3) Parameter Settings: For GCN in PPWGCN, we set the
embedding size of convolution layer as 200 and set the window
size as 20. Besides, we set the learning rate as 0.02 and dropout

TABLE II
DATASET (BR: BUG REPORT). BOLD ENTITIES DENOTE THE PRIORITY LABEL

WITH THE MOST BRs

TABLE III
STATISTICS OF BUG REPORTS IN EACH PROJECT

rate as 0.5. We train our PPWGCN for a maximum of 200 epochs.
The reason is that Yao et al. [8] experimented with other settings
and found that small changes did not improve the results much.
Moreover, through comparative experiments on five different
types of datasets, Yao et al. [8] also found that the above settings
for these two parameters (learning rate and dropout rate) are
more suitable. Thus, we follow their settings.

V. EXPERIMENTAL RESULTS

A. Answer to RQ1: Performance Comparison With Baselines

Table IV shows the results of performance comparison. Es-
pecially, WAvg denotes weighted average, where the weight is
calculated by the number of each priority label divides by the
total number of the priority label.

We analyze the results as follows.

FANG et al.: EFFECTIVE PREDICTION OF BUG-FIXING PRIORITY VIA WEIGHTED GRAPH CONVOLUTIONAL NETWORKS 569

TABLE IV
PERFORMANCE COMPARISON WITH BASELINES. BOLD ENTITIES DENOTE THE BEST WEIGHTED AVERAGE F SCORE

1) For Mozilla, we obtain the F-measure values of 66.59%,
33.84%, 60.17%, 43.62%, and 63.52% for P1, P2, P3, P4, and P5
priority labels, respectively, and the weighted average F-measure
value is 58.00%. The F-measure value is highest for priority label
P1 while it is lowest for priority label P2.

By comparing with the F-measure values of DRONE, we find
that DRONE performs better when predicting the priority labels
P1. Our approach can improve the weighted average F-measure
value by 15.58%.

By comparing with the F-measure values of cPur, we find
that cPur can only predict the priority labels P1. One major
reason is that the multi-classification task is challengeable and
the imbalanced data make the neural networks learn to predict
priority class labels that have large-sized samples. Our approach
not only can improve the weighted average F-measure value by
25.84% but can make predictions for each priority label because
our approach can fully capture document-word relations, global
word-word relations, and document-document relations.

Thus, our approach performs better than DRONE and cPur
for Mozilla.

2) For Eclipse, we obtain the F-measure values of 22.49%,
24.08%, 76.58%, 15.87%, and 21.47% for P1, P2, P3, P4, and P5
priority labels, respectively, and the weighted average F-measure
value is 66.33%. The F-measure value is highest for priority label
P3 while it is lowest for priority label P4.

By comparing with the F-measure values of DRONE, we find
that our approach can predict all the five priority labels while

DRONE only predicts the priority labels P2, P3, P4, and P5. Our
approach can improve the weighted average F-measure value by
18.60%.

By comparing with F-measure values of cPur, we find that
cPur can only predict the priority label P3. Although the
weighted average F-measure value of our approach is a little
lower than cPur, our approach can make predictions for each
priority label, which is more valuable in practice.

Therefore, our approach performs better than DRONE and
cPur for Eclipse.

3) For Netbeans, we obtain the F-measure values of 49.02%,
48.73%, 58.40%, 25.55%, and 0% for P1, P2, P3, P4, and P5
priority labels, respectively, and the average F-measure value is
36.34%. The F-measure value is the highest for priority label P3
while it is the lowest for priority label P5.

By comparing with the F-measure values of DRONE, we find
that our approach can predict four priority labels while DRONE
only predicts the priority labels P1 and P2. Our approach can
improve the weighted average F-measure value by 8.90%.

By comparing with F-measure values of cPur, we find that
cPur can predict only two priority labels P2 and P3. Our approach
can improve the weighted average F-measure value by 12.92%.

Thus, our approach performs better than DRONE and cPur
for Netbeans.

4) For GCC, we obtain the F-measure values of 36.41%,
59.73%, 64.87%, 15.51%, and 9.64% for P1, P2, P3, P4, and P5
priority labels, respectively, and the average F-measure value is

570 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

Fig. 3. Vary ratio of the training dataset on the F-measure values for Mozilla,
Eclipse, and GCC.

37.23%. The F-measure value is the highest for priority label P3
while it is the lowest for priority label P5.

By comparing with the F-measure values of DRONE, we
find that our approach can predict all five priority labels while
DRONE only predicts the priority labels P1 and P3. Our ap-
proach can improve the weighted average F-measure value by
3.08%.

By comparing with the F-measure values of cPur, we find
that cPur can predict only the priority label P3. Our approach
can improve the weighted average F-measure value by 26.59%.

Therefore, our approach performs better than DRONE and
cPur for GCC.

Compared to baselines, our approach considers five elements
of bug reports and can capture global co-occurrence informa-
tion by building a heterogeneous graph. Meanwhile, GCN can
effectively make the features of vertices in the same priority
label similar and implements classification as a special Laplacian
smoothing, which mixes the features of a vertex and its nearby
neighbors [28]. Moreover, we utilize the weighted loss function
to handle the imbalanced data. Therefore, our approach can
obtain the relative balanced prediction results while keeping a
high F-measure for the class-label with large-sized samples.

According to the above-mentioned experimental results, we
answer to RQ1 as follows:

Answer to RQ1: Our approach is more effective than DRONE
and cPur.

B. Answer to RQ2: Effectiveness Evaluation

To answer RQ2, we employ our approach when utilizing
different ratios of the training dataset (ratios = 0.9, 0.8, 0.7, 0.6,
0.5, 0.4, 0.3, 0.2, and 0.1). We show the results of the priority
prediction for Mozilla, Eclipse, Netbeans, and GCC datasets in
Fig. 3.

We analyze the results as follows.
1) For Mozilla, we obtain average F-measure values of

55.06%, 54.71%, 54.38%, 53.74%, 53.55%, 53.35%, 53.13%,
52.60%, and 51.86% for different ratios of the training dataset.
We find that the average F-measure value is decreased as we
decrease the ratio of training dataset. As a comparison, the
average F-measure values of two baselines are 24.95% and

Fig. 4. Mozilla: Performance comparison of using weighted loss function and
general loss function.

13.14%. Our approach with 10% ratio of the training dataset can
still improve average F-measure values by 26.91% and 38.72%.

2) For Eclipse, we obtain average F-measure values of
32.82%, 32.68%, 32.91%, 32.18%, 32.10%, 32.28%, 32.06%,
31.54%, and 31.07% for different ratios of the training dataset.
Generally, the average F-measure value is decreased as we
decrease the ratio of training dataset. By contrast, the average
F-measure values of two baselines are 12.01% and 17.92%. Our
approach with 10% ratio of the training dataset can still improve
average F-measures by 19.06% and 13.15%.

3) For Netbeans, we obtain average F-measure values of
37.34%, 37.59%, 37.35%, 36.75%, 36.34%, 36.44%, 36.04%,
35.20%, and 33.67% for different ratios of the training dataset. In
general, the tendency of the F-measure on Netbeans is same with
Mozilla and Eclipse. As a comparison, the average F-measure
values of two baselines are 27.07% and 21.24%. Our approach
with 10% ratio of the training dataset can still improve average
F-measure values by 6.60% and 12.43%.

4) For GCC, we obtain average F-measure values of 37.33%,
38.77%, 38.51%, 37.74%, 37.23%, 36.50%, 36.37%, 36.10%,
and 33.52% for different ratios of the training dataset. For these
four datasets, we observe that there are same tendencies of the
F-measure value as we decrease the ratio of training dataset.
By contrast, the average F-measure values of two baselines are
34.02% and 13.12%. Our approach with 20% ratio of the training
dataset can still improve average F-measure values by 2.08% and
22.98%.

Since our approach builds a graph that contains all bug reports,
it could fully capture the global word-word relations. Thus, our
approach can still perform well with a low ratio of the training
dataset. According to the above analysis, we answer to RQ2 as
follows:

Answer to RQ2: Although the average F-measure value is
decreased as we decrease the ratio of the training dataset, PP-
WGCN can still perform well with a low ratio of the training
dataset.

C. Answer to RQ3: Performance Analysis

To answer RQ3, we perform extra experiments that use gen-
eral loss function and compare their performance with our pro-
posed approach. We show the comparison results in Figs. 4–7.

FANG et al.: EFFECTIVE PREDICTION OF BUG-FIXING PRIORITY VIA WEIGHTED GRAPH CONVOLUTIONAL NETWORKS 571

Fig. 5. Eclipse: Performance comparison of using weighted loss function and
general loss function.

Fig. 6. Netbeans: Performance comparison of using weighted loss function
and general loss function.

Fig. 7. GCC: Performance comparison of using weighted loss function and
general loss function.

We name the method that uses common loss function with PPGL
(i.e., the priority prediction with general loss function).

We analyze the experimental results as follows.
1) For Mozilla, PPGL obtains the F-measure values of

73.45%, 24.97%, 59.54%, 46.14%, and 68.16% for P1, P2, P3,
P4, and P5 priority labels, respectively. The F-measure value is
highest for priority label P1 and while it is lowest for priority
label P2. The average F-measure value is 54.45%.

We use variance score to demonstrate whether the weighted
loss function can be helpful to our approach. PPWGCN obtains
the F-measure values of 66.59%, 33.84%, 60.17%, 43.62%, and
63.52% for P1, P2, P3, P4, and P5 priority labels, respectively.
The variance score of PPWGCN and PPGL are 0.0200 and

0.0378, respectively, and thus, PPWGCN can improve the vari-
ance score by 0.0178.

2) For Eclipse, PPGL obtains the F-measure values of 17.05%,
17.94%, 87.51%, 11.76%, and 19.5% for P1, P2, P3, P4, and P5
priority labels, respectively. The F-measure value is highest for
priority label P3 and while it is lowest for priority label P4. The
average F-measure value is 30.75%.

We use variance score to demonstrate whether the weighted
loss function can be helpful to our approach. PPWGCN obtains
the F-measure values of 22.49%, 24.08%, 76.58%, 15.87%, and
21.47% for P1, P2, P3, P4, and P5 priority labels, respectively.
The variance score of PPWGCN and PPGL are 0.0628 and
0.1015, respectively, and thus, PPWGCN can improve the vari-
ance score by 0.0387.

3) For Netbeans, PPGL obtains the F-measure values of
45.56%, 48.64%, 59.30%, 18.21%, and 0% for P1, P2, P3,
P4, and P5 priority labels, respectively. The F-measure value
is highest for priority label P3 and while it is lowest for priority
label P5. The average F-measure value is 34.34%.

We use variance score to demonstrate whether the weighted
loss function can be helpful to our approach. PPWGCN obtains
the F-measure values of 49.02%, 48.73%, 58.40%, 25.55%, and
0% for P1, P2, P3, P4, and P5 priority labels, respectively. The
variance score of PPWGCN and PPGL are 0.0559 and 0.0598,
respectively, and thus, PPWGCN can improve the variance score
by 0.0039.

4) For GCC, PPGL obtains the F-measure values of 28.93%,
60.38%, 65.92%, 14.06%, and 4.47% for P1, P2, P3, P4, and P5
priority labels, respectively. The F-measure value is highest for
priority label P3 and while it is lowest for priority label P5. The
average F-measure value is 34.75%.

We use variance score to verify whether the weighted loss
function can be helpful to our approach. PPWGCN obtains the
F-measure values of 36.41%, 59.73%, 64.87%, 15.51%, and
9.64% for P1, P2, P3, P4, and P5 priority labels, respectively. The
variance score of PPWGCN and PPGL are 0.0626 and 0.0752,
respectively, and thus, PPWGCN can improve the variance score
by 0.0126.

Moreover, PPWGCN can improve the average F-measure
value by 0.25%, 2.00%, and 2.48% for Eclipse, Netbeans, and
GCC, respectively. PPGL only improve the average F-measure
value by 0.9% for Mozilla. The reason is that we set weights
for different labels when they implement the backpropagation,
thus, the model reduces the attention to priority class with the
large-sized samples. According to the analysis above, we answer
to RQ3 as follows:

Answer to RQ3: The variance scores show that the weighted
loss function could relieve the class imbalanced problem of our
datasets.

VI. THREATS TO VALIDITY

In this section, we discuss several possible threats to our
approach, which includes external ones and internal ones, we
explain as follows. Moreover, several bug reports from open-
source projects are with poor quality and priority class-labels
may be invalid.

572 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

1) External threats: We collect bug reports from four open-
source bug repositories to employ our experiments. But we
cannot ensure that our approach is still effective in other
large-scale open-source projects and commercial projects.
Moreover, we also only used bug reports managed by
Bugzilla to conduct our experiments. Since different bug
tracking systems have various life cycles [29] of bugs, we
are not sure whether our approach is still effective in bug
reports managed by other bug tracking systems. Another
external threat is that several bug reports from open-source
projects are of poor quality and priority class-labels, thus
they may be invalid. In the future, we will implement
our approach for the open-source projects managed by
other bug tracking systems in order to demonstrate the
effectiveness of the proposed approach.

2) Internal threats: We utilize description, summary, severity,
component, and product of bug reports to build our dataset
and use them to train our model. However, we do not
consider developers’ characteristics which may affect the
quality of priority labels.

VII. RELATED WORK

In this section, we introduce the previous studies related to
the priority prediction of bug reports. Then, we introduce the
some tasks related to the priority prediction such as severity
prediction of bug reports and other bug management tasks such
as bug localization, bug summarization, and duplicate bug report
detection.

A. Priority Prediction

Abdelmoez et al. [30] utilized Naïve Bayesian and considered
their mean time to realize the priority prediction. They employed
their approach on three large open-source projects, including
Mozilla, Eclipse, and GNOME.

Tian et al. [2] proposed a linear regression model named
DRONE. They made good use of features in bug reports and
utilized threading approach to handle imbalanced data, thus
DRONE achieves the average F-measure to 29%.

Alenezi and Banitaan [31] performed Naïve Bayesian, ran-
dom forest, and decision tree on the priority prediction, respec-
tively. They considered two features, including term frequency
weighted words of bug reports and classification of bug report at-
tributes, where the results show that the second feature performs
better than the first one. Decision trees and random forests are
better than Naïve Bayesian.

Umer et al. [5] used a CNN-based model to predict the labels
of bug reports. They first converted each word into a vector
using a word2vec model. Then, they passed both the vectors
and emotions of bug reports to the CNN-based classifier.

Our work is different from previous studies. We consider five
elements of bug reports and develop a novel framework based
on a weighted GCN.

There are some research studies helpful for the bug report
priority prediction, such as software fault-proneness prediction.
For example, Li et al. [32] integrate developer distribution rela-
tion, module dependency relation, and developer collaboration

relation, and then they used a trirelation network to achieve
software fault-proneness prediction. We find that, distinguishing
modules that are prone to failure is helpful for us to predict bug
report priority because these modules may have high priority
(worth further studying in the future).

B. Severity Prediction

The severity prediction is different from the priority predic-
tion. Users assign the severity class-label of a bug report while
developers provide the priority labels [2]. To the best of our
knowledge, more and more researchers pay attention to severity
prediction.

Menzies and Marcus [33] were the first to predict the severity
labels of bug reports. They performed their approach on bug
reports from NASA. They first converted descriptions of the
bug reports into tokens. Then they preprocessed these tokens by
performing stemming and removing stop words. The important
tokens from training data were chosen to feed into an algorithm
called RIPPER [34].

Lamkanfi et al. [35] first performed severity prediction on
open-source repositories, which extended the work of Menzies
and Marcus. They only predicted five severity labels, including
blocker, minor, critical, major, and trivial. Then, the five cat-
egories were classified as two groups—severe and nonsevere.
Blocker, critical, and major were in the severe group while the
nonsevere included minor and trivial.

Lamkanfi et al. [36] explored several other machine learn-
ing algorithms to predict severity labels of bug reports, in-
cluding Naïve Bayesian, Naïve Bayesian multinomial, SVM,
and 1-nearest neighbor. Based on experimental results, they
found Naïve Bayesian multinomial is a good choice for severity
prediction. Especially, using Naïve Bayesian needs to satisfy
a basic assumption: sample attributes are independent of each
other [37]. For the severity prediction of the bug report, severity
bug reports, and nonseverity bug reports are different in their
summary, which means sample attributions of the summary in
these two types of bug reports are independent. Hence, Naïve
Bayesian performs well in the severity prediction of bug reports.
However, in the priority prediction task of bug reports, there are
five priority class labels for bug reports. For bug reports with
adjacent priority class labels, they may have similar content. A
representative example is that if two bug reports with adjacent
priority class labels are generated by the same product, their
“component” element may be identical, which violates the basic
assumption of Naïve Bayesian because bug reports with different
priority classes labels have the dependent sample attributions.
Even if there are some bug reports from different products, they
also may have identical elements, i.e., the “severity” element.
Therefore, Naïve Bayesian methods are not suitable for the bug
report priority prediction.

Yang et al. [38] performed feature selection schemas such
as chi-square, correlation coefficient, and information gain to
choose the suitable features. Then they put them into the
Naïve Bayesian multinomial. The experimental results showed
that these features selection schemes perform well for severity
prediction.

FANG et al.: EFFECTIVE PREDICTION OF BUG-FIXING PRIORITY VIA WEIGHTED GRAPH CONVOLUTIONAL NETWORKS 573

Zhang et al. [29] utilized an enhanced version of REP to
capture top-K nearest neighbors of new bug reports. Then
they developed a novel classification algorithm by considering
the textual similarities between the given bug report and the
neighbors.

Recently, Tan et al. [39] utilized logistic regression, a sim-
ple machine learning algorithm, to predict the severity labels
of bug reports. They used BM25 to enrich their bug reports
from Mozilla, Eclipse, and GCC with data collected from Stack
Overflow.

Our work is different from severity prediction. Severity label
is assigned by a reporter who describes the details of a given
bug while priority label is assigned by a bug triager who is
responsible for assigning the bug to an appropriate bug fixer. [2].
Therefore, there are different features which are adopted in the
priority prediction and severity prediction tasks respectively so
that it is necessary to design the different approaches to conduct
these two different prediction tasks.

C. Other Bug Management Tasks

Besides the priority prediction and severity prediction of bug
reports, bug management tasks include bug localization, bug
summarization, duplicate bug report detection, etc.

Bug localization is aimed at automatically locating the new
bug to reduce the work of developers. Lukins et al. [40] used
LDA to find the new bug in the source code file. They took the re-
port as a query and then performed LDA to retrieve the source file
to concern the localization of the bug. Rao and Kak [41] explored
several IR-models when employing the bug localization task,
including LDA, cluster-based document model, latent semantic
analysis model, vector space model, and unigram model. Zhou
et al. [42] proposed a method named BugLocator. They first
ranked all files according to textual similarity between the source
code and the new bug report with a revised vector space model.
Moreover, they also ranked the relevant files based on the similar
historical bug reports. At last, BugLocator can locate the given
bug by combining the two ranks. Kim et al. [43] proposed a
recommendation model with two phases. They utilized Naïve
Bayesian to filter out the useless bug reports and then predicted
the buggy file for the given bug report in this model. Saha et
al. [44] performed AST to program structures of source code
files. Then they used Okapi BM25 to compute the similarity
between constructs of candidate buggy files and the given bug
report. Zamani et al. [45] proposed a feature location method
based on a novel term-weighting technique which considered
how recently one term has been in use in the repositories.

Bug report summarization aims to generate a summary of
a bug report by using an automated approach. Rastkar et
al. [46] used three supervised classification algorithms to gen-
erate bug summarizations, which included bug report classifier
(BRC), email and meeting classifier (EMC), and email classifier
(EC). Mani et al. [47] utilized four unsupervised approaches
to perform bug report summarization, which included Diverse
Rank (DivRank), Grasshopper, maximum marginal relevance
(MMR), and Centroid. Jiang et al. [48] adopted byte-level
N-grams to capture the authorship characteristics of developers.
Then they performed the authorship characteristics to collect

similar bug reports to employ the bug report summarization
task. Najam et al. [49] summarized the source code fragment
with small-scale crowdsourcing based features. The experimen-
tal results indicate that this approach performs better than the
existing code fragment classifiers.

Users from different parts of the world may encounter the
same bug but submit various bug reports. The goal of duplicate
bug report detection is to recognize the duplicate bug reports. A
number of approaches have been proposed to detect duplicate
bug reports. Most of them rely on the good similarity measure
to find bug reports that are similar. They are worked by Sun et
al. [50], Jalbert and Weimer [51], Wang et al. [52], Runeson
et al. [53], and many more. These studies captured various
elements of bug reports and then converted them into vectors.
Then these vectors can be used to calculate a similar score
between two bug reports. Many of the studies collected the
important word tokens appearing in the bug reports via making
use of the concepts of inverse document frequency and term
frequency. Wang et al. [52] utilized execution traces to detect
duplicate bug reports. Jalbertand Weimer [51] considered other
elements of bug reports (e.g., product) to compute the similarity
of two bug reports.

VIII. CONCLUSION

In this article, we propose a novel framework named PP-
WGCN to perform automated priority prediction of bug reports.
We extract five elements (i.e., description, summary, severity,
component, and product) of bug reports and preprocess them
with simple NLP technologies. Finally, we feed the preprocessed
bug reports into a classifier based on GCN with a weighted
loss function to realize the priority prediction. To verify the
effectiveness of our approach, we perform our experiments on
four open-source bug repositories, including Mozilla, Eclipse,
Netbeans, and GCC. The experimental results show that our
approach can outperform two cutting-edge approaches. In ad-
dition, our approach can still perform well with a low ratio of
the training data. We list two main reasons why our approach
performs well: 1) our approach considers five elements of bug
reports and capture the global word-word relations; and 2) this
GCN model can effectively capture the correlations between two
bug reports.

In the future, we plan to further solve the problem of the un-
balanced data, including collecting more bug reports to balance
our data and attempting more effective approaches. Then, we
also plan to develop a complete tool for the priority prediction
of bug reports. Beside, we will actively explore the potential
of GCN that uses in other software engineering tasks such
as bug summarization, code search, and duplicate bug report
detection.

REFERENCES

[1] X. Xia, D. Lo, X. Wang, and B. Zhou, “Accurate developer recommen-
dation for bug resolution,” in Proc. 20th Work. Conf. Reverse Eng., 2013,
pp. 72–81.

[2] Y. Tian, D. Lo, X. Xia, and C. Sun, “Automated prediction of bug report
priority using multi-factor analysis,” Empirical Softw. Eng., vol. 20, no. 5,
pp. 1354–1383, 2015.

574 IEEE TRANSACTIONS ON RELIABILITY, VOL. 70, NO. 2, JUNE 2021

[3] J. Anvik, L. Hiew, and G. C. Murphy, “Coping with an open bug repos-
itory,” in Proc. OOPSLA Workshop Eclipse Technol. eXchange, 2005,
pp. 35–39.

[4] X. Xia, D. Lo, M. Wen, E. Shihab, and B. Zhou, “An empirical study
of bug report field reassignment,” in Proc. Softw. Evol. Week-IEEE Conf.
Softw. Maintenance, Reeng., Reverse Eng., 2014, pp. 174–183.

[5] Q. Umer, H. Liu, and I. Illahi, “CNN-based automatic prioritization of bug
reports,” IEEE Trans. Rel., vol. 69, no. 4, pp. 1341–1354, Dec. 2020.

[6] Q. Umer, H. Liu, and Y. Sultan, “Emotion based automated priority
prediction for bug reports,” IEEE Access, vol. 6, pp. 35 743–35752, 2018.

[7] H. Peng et al., “Large-scale hierarchical text classification with recursively
regularized deep graph-CNN,” in Proc. World Wide Web Conf., 2018,
pp. 1063–1072.

[8] L. Yao, C. Mao, and Y. Luo, “Graph convolutional networks for text classi-
fication,” in Proc. AAAI Conf. Artif. Intell., 2019, vol. 33, pp. 7370–7377.

[9] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in Prof. 5th Int. Conf. Learn. Representation,
2016.

[10] X. Kong, L. Zhang, W. E. Wong, and B. Li, “Experience report: How
do techniques, programs, and tests impact automated program repair?” in
Proc. IEEE 26th Int. Symp. Softw. Rel. Eng., 2015, pp. 194–204.

[11] R. K. Saha, J. Lawall, S. Khurshid, and D. E. Perry, “Are these bugs
really” normal”?” in Proc. IEEE/ACM 12th Work. Conf. Mining Softw.
Repositories, 2015, pp. 258–268.

[12] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[13] P. W. Battaglia et al., “Relational inductive biases, deep learning, and graph
networks,” 2018, arXiv:1806.01261.

[14] J. Yin, J. Liu, and M. Yuan, “Predicting emerging trends of keywords
based on graph neural network,”Int. J. Performability Eng., vol. 16, no. 12,
pp. 1957–1964, 2020.

[15] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and
locally connected networks on graphs,” in Prof. 2nd Int. Conf. Learn.
Representation, 2013.

[16] M. Henaff, J. Bruna, and Y. LeCun, “Deep convolutional networks on
graph-structured data,” 2015, arXiv:1506.05163.

[17] J. Bastings, I. Titov, W. Aziz, D. Marcheggiani, and K. Sima’an, “Graph
convolutional encoders for syntax-aware neural machine translation,” in
Prof. Conf. Empir. Methods Nat. Lang. Process., 2017, pp. 1957–1967.

[18] Y. Li, R. Jin, and Y. Luo, “Classifying relations in clinical narratives
using segment graph convolutional and recurrent neural networks (Seg-
GCRNS),” J. Amer. Med. Inform. Assoc., vol. 26, no. 3, pp. 262–268, 2019.

[19] D. Marcheggiani and I. Titov, “Encoding sentences with graph convo-
lutional networks for semantic role labeling,” in Prof. Conf. Empir. Meth-
ods Nat. Lang. Process., 2017, pp. 1506–1515,.

[20] H. Peng et al., “Large-scale hierarchical text classification with recursively
regularized deep graph-CNN,” in Proc. World Wide Web Conf., 2018,
pp. 1063–1072.

[21] M. Bai, W. Luo, K. Kundu, and R. Urtasun, “Exploiting semantic infor-
mation and deep matching for optical flow,” in Proc. Eur. Conf. Comput.
Vis., 2016, pp. 154–170.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, Bert: Pre-training of
deep bidirectional transformers for language understanding,” in Prof. Conf.
North Amer. Assoc. Comput. Linguist.: Human Lang. Technol., 2019, pp.
4171–4186

[23] H. Mi, Z. Wang, and A. Ittycheriah, “Vocabulary manipulation for neura
machine translation,” in Prof. 54th Annu. Meeting Assoc. Comput. Lin-
guist., 2016, pp. 2016–2021.

[24] Y. Wu et al., “Google’s neural machine translation system: Bridging the
gap between human and machine translation,” 2016, arXiv:1609.08144.

[25] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans.
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sep. 2009.

[26] Y. Sun, A. K. Wong, and M. S. Kamel, “Classification of imbalanced data:
A review,” Int. J. Pattern Recognit. Artif. Intell., vol. 23, no. 4, pp. 687–719,
2009.

[27] C. Goutte and E. Gaussier, “A probabilistic interpretation of precision,
recall and f-score, with implication for evaluation,” in Proc. Eur. Conf. Inf.
Retrieval, 2005, pp. 345–359.

[28] Q. Li, Z. Han, and X.-M. Wu, “Deeper Insights Into Graph Convolutional
Networks for Semi-Supervised Learning,” in Prof. AAAI Conf. Artif. Intell.,
2018, pp. 3538–3545.

[29] T. Zhang, J. Chen, G. Yang, B. Lee, and X. Luo, “Towards more accurate
severity prediction and fixer recommendation of software bugs,” J. Syst.
Softw., vol. 117, pp. 166–184, 2016.

[30] W. Abdelmoez, M. Kholief, and F. M. Elsalmy, “Bug fix-time prediction
model using naïve Bayes classifier,” in Proc. 22nd Int. Conf. Comput.
Theory Appl., 2012, pp. 167–172.

[31] M. Alenezi and S. Banitaan, “Bug reports prioritization: Which features
and classifier to use?” in Proc. 12th Int. Conf. Mach. Learn. Appl., 2013,
vol. 2, pp. 112–116.

[32] Y. Li, W. E. Wong, S.-Y. Lee, and F. Wotawa, “Using tri-relation networks
for effective software fault-proneness prediction,” IEEE Access, vol. 7, pp.
63066–63080, 2019.

[33] T. Menzies and A. Marcus, “Automated severity assessment of software
defect reports,” in Proc. IEEE Int. Conf. Softw. Maintenance, 2008,
pp. 346–355.

[34] W. W. Cohen, “Fast effective rule induction,” in Proc. Mach. Learn., 1995,
pp. 115–123.

[35] A. Lamkanfi, S. Demeyer, E. Giger, and B. Goethals, “Predicting the
severity of a reported bug,” in Proc. 7th IEEE Work. Conf. Mining Softw.
Repositories, 2010, pp. 1–10.

[36] A. Lamkanfi, S. Demeyer, Q. D. Soetens, and T. Verdonck, “Comparing
mining algorithms for predicting the severity of a reported bug,” in Proc.
15th Eur. Conf. Softw. Maintenance Reeng., 2011, pp. 249–258.

[37] J. D. Rennie, L. Shih, J. Teevan, and D. R. Karger, “Tackling the poor
assumptions of naive Bayes text classifiers,” in Proc. 20th Int. Conf. Mach.
Learn., 2003, pp. 616–623.

[38] C.-Z. Yang, C.-C. Hou, W.-C. Kao, and X. Chen, “An empirical study on
improving severity prediction of defect reports using feature selection,” in
Proc. 19th Asia-Pacific Softw. Eng. Conf., 2012, vol. 1, pp. 240–249.

[39] Y. Tan, S. Xu, Z. Wang, T. Zhang, Z. Xu, and X. Luo, “Bug severity
prediction using question-and-answer pairs from stack overflow,” J. Syst.
Softw., vol. 165, 2020, Art. no. 110567.

[40] S. K. Lukins, N. A. Kraft, and L. H. Etzkorn, “Source code retrieval for
bug localization using latent dirichlet allocation,” in Proc. 15th Work. Conf.
Reverse Eng., 2008, pp. 155–164.

[41] S. Rao and A. Kak, “Retrieval from software libraries for bug localization:
A comparative study of generic and composite text models,” in Proc. 8th
Work. Conf. Mining Softw. Repositories, 2011, pp. 43–52.

[42] J. Zhou, H. Zhang, and D. Lo, “Where should the bugs be fixed? more ac-
curate information retrieval-based bug localization based on bug reports,”
in Proc. 34th Int. Conf. Softw. Eng., 2012, pp. 14–24.

[43] D. Kim, Y. Tao, S. Kim, and A. Zeller, “Where should we fix this bug?
a two-phase recommendation model,” IEEE Trans. Softw. Eng., vol. 39,
no. 11, pp. 1597–1610, Nov. 2013.

[44] R. K. Saha, M. Lease, S. Khurshid, and D. E. Perry, “Improving bug local-
ization using structured information retrieval,” in Proc. 28th IEEE/ACM
Int. Conf. Automated Softw. Eng., 2013, pp. 345–355.

[45] S. Zamani, S. P. Lee, R. Shokripour, and J. Anvik, “A noun-based approach
to feature location using time-aware term-weighting,” Inf. Softw. Technol.,
vol. 56, no. 8, pp. 991–1011, 2014.

[46] S. Rastkar, G. C. Murphy, and G. Murray, “Summarizing software artifacts:
A case study of bug reports,” in Proc. ACM/IEEE 32nd Int. Conf. Softw.
Eng., 2010, vol. 1, pp. 505–514.

[47] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey, “AUSUM: Approach
for unsupervised bug report summarization,” in Proc. ACM SIGSOFT 20th
Int. Symp. Foundations Softw. Eng., 2012, pp. 1–11.

[48] H. Jiang, J. Zhang, H. Ma, N. Nazar, and Z. Ren, “Mining authorship
characteristics in bug repositories,” Sci. China Inf. Sci., vol. 60, no. 1,
2017, Art. no. 012107.

[49] N. Nazar, H. Jiang, G. Gao, T. Zhang, X. Li, and Z. Ren, “Source code
fragment summarization with small-scale crowdsourcing based features,”
Front. Comput. Sci., vol. 10, no. 3, pp. 504–517, 2016.

[50] C. Sun, D. Lo, X. Wang, J. Jiang, and S.-C. Khoo, “A discriminative
model approach for accurate duplicate bug report retrieval,” in Proc. 32nd
ACM/IEEE Int. Conf. Softw. Eng.-Volume 1, 2010, pp. 45–54.

[51] N. Jalbert and W. Weimer, “Automated duplicate detection for bug tracking
systems,” in Proc. IEEE Int. Conf. Dependable Syst. Netw. With FTCS
DCC, 2008, pp. 52–61.

[52] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, “An approach to detecting
duplicate bug reports using natural language and execution information,”
in Proc. 30th Int. Conf. Softw. Eng., 2008, pp. 461–470.

[53] P. Runeson, M. Alexandersson, and O. Nyholm, “Detection of duplicate
defect reports using natural language processing,” in Proc. 29th Int. Conf.
Softw. Eng., 2007, pp. 499–510.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

