
RepairLLaMA: Efficient Representations and Fine-Tuned
Adapters for Program Repair

André Silva∗
KTH Royal Institute of Technology

Stockholm, Sweden
andreans@kth.se

Sen Fang∗
KTH Royal Institute of Technology

Stockholm, Sweden
senf@kth.se

Martin Monperrus
KTH Royal Institute of Technology

Stockholm, Sweden
monperrus@kth.se

ABSTRACT
Automated Program Repair (APR) has evolved significantly with the
advent of Large LanguageModels (LLMs). Fine-tuning LLMs for pro-
gram repair is a recent avenue of research, with many dimensions
which have not been explored. Existing work mostly fine-tunes
LLMs with naive code representations and is fundamentally limited
in its ability to fine-tune larger LLMs. To address this problem,
we propose RepairLLaMA, a novel program repair approach that
combines 1) code representations for APR and 2) the state-of-the-
art parameter-efficient LLM fine-tuning technique called LoRA.
This results in RepairLLaMA producing a highly effective ‘program
repair adapter’ for fixing bugs with language models. Our experi-
ments demonstrate the validity of both concepts. First, fine-tuning
adapters with program repair specific code representations enables
the model to use meaningful repair signals. Second, parameter-
efficient fine-tuning helps fine-tuning to converge and contributes
to the effectiveness of the repair adapter to fix data-points outside
the fine-tuning data distribution. Overall, RepairLLaMA correctly
fixes 125 Defects4J v2 and 82 HumanEval-Java bugs, outperforming
all baselines.

KEYWORDS
Automated Program Repair, Large Language Models, Code Repre-
sentations, Parameter-Efficient Fine-Tuning

1 INTRODUCTION
Automated program repair (APR) [26] aims at automatically fixing a
software bugwithout human intervention. Learning-based repair [7,
17, 18, 39, 42, 44, 47, 52] has become the mainstream solution to this
problem due to the powerful ability of deep neural networks to learn
complex bug fix patterns. Clearly, large language models (LLMs),
pre-trained on vast amounts of data, have pushed learning-based
repair to the next frontier [17, 43]. In program repair, LLMs have
been mostly used with prompt engineering [21, 45], and recently, a
line of work around fine-tuning has emerged [17, 18, 39, 49].

Fine-tuning LLMs for program repair is complex. Early work
simply refines the network weights based on additional fine-tuning
data. However, this kind of fine-tuning is rather primitive and
suffers from two significant drawbacks. First, fine-tuning is also
known to be able to adapt the input/output representations of the
data under study [5]. In the context of program repair, there is
an opportunity to fine-tune with code representations that maxi-
mize downstream task performance, that is, repair performance. In
particular, previous work overlooks the realistic representation of
fault localization in the input. Second, previous work considered

*These authors contributed equally to this work.

the most basic fine-tuning technique, which is full-parameter fine-
tuning. As LLMs increase in size [24], full-parameter fine-tuning
poses important overfitting problems when fine-tuning data is lim-
ited, which is typically the case in program repair. In this paper,
we address the problem of devising efficient fine-tuning techniques
[14] for program repair, with a focus on code representations and
adapters.

We propose RepairLLaMA, a new program repair approach
that combines realistic repair-specific code representations with
parameter-efficient fine-tuning. First, RepairLLaMA’s code repre-
sentations incorporate fault localization signals and are designed
to support multi-location bugs. Second, RepairLLaMA utilizes Low-
Rank Adaption (LoRA), a state-of-the-art parameter-efficient fine-
tuning technique, to train a much smaller repair adapter (when
compared to the full LLM) that adapts the LLM for program repair
while helping prevent overfitting. As we will demonstrate in this
paper, the concept of repair adapter is novel and potent.

Our experimental results validate RepairLLaMA’s core designs.
First, RepairLLaMA achieves state-of-the-art performance in two
benchmarks, correctly fixing 125 Defects4J v2 [22] bugs and 82
bugs on recently proposed HumanEval-Java [17], which boosts
internal and external validity. The experiments show that the de-
vised code representations with repair signals allow the LLM to
synthesize patches more effectively than with a naive code-only
representation. Also, RepairLLaMA clearly outperforms non-fine-
tuned baselines, incl. GPT-4. Moreover, our results also show the
effectiveness of parameter-efficient fine-tuning: RepairLLaMA’s re-
pair adapters, with only 4M parameters, are 1600x smaller than the
initial pre-trained LLM (CodeLLama-7B). To sum up, the efficient
representations and repair adapters of RepairLLaMA outperform
recent results on fine-tuning for program repair [15, 17, 39] as well
as world-class models such as GPT-3.5 and GPT-4.

To sum up, we make the following contributions:

• We design RepairLLaMA, an original fine-tuning pipeline for
automated program repair, that maximizes knowledge from
the program repair domain, while keeping strong alignment
with pre-training.

• We systematically evaluate code representations for program
repair fine-tuning. Our results clearly show that the best code
representation leverages task-specific signals, including fault
localization and original buggy code.

• We demonstrate that parameter-efficient fine-tuning per-
forms better than full-parameter fine-tuning in the context
of program repair. The “repair adapters” of RepairLLaMA
are training-efficient, inference-efficient, and powerful to re-
pair bugs, achieving state-of-the-art performance across two

ar
X

iv
:2

31
2.

15
69

8v
1

 [
cs

.S
E

]
 2

5
D

ec
 2

02
3

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

benchmarks, Defects4J and HumanEval-Java, outperforming
even GPT-4.

• For the sake of open science, we publish our source code,
models, and artifacts at https://anonymous.4open.science/
r/repairllama-BC13 and provide a demo website at https:
//repairllama.github.io.

2 REPAIRLLAMA: EFFICIENT FINE-TUNING
FOR PROGRAM REPAIR

2.1 Overview
Figure 1 illustrates the pipeline of RepairLLaMA for APR, which
is divided into three consecutive stages. The core novelties of this
pipeline are: 1) the APR specific code representations and 2) the
end-to-end use of a parameter-efficient fine-tuning technique.

The core of RepairLLaMA is a repair adapter. A repair adapter is
a plug-and-play extension of the model parameters that modifies
the behavior of the LLM in order to maximize performance on
the repair task, for a given programming language. The adapter is
responsible for transforming a rich, tailored input representation
of the buggy code into the fit output representation of the patch.

In the first stage of RepairLLaMA, the core choices are made,
namely: 1) the initial pre-trained model (subsection 2.3); 2) the input
code representation and output code representation (subsection 2.4);
and 3) the fine-tuning dataset (subsection 2.5). These choices are
all important and are further discussed in the remainder of this
section.

In the second stage, a repair adapter is trained. The repair adapter
is amuch smaller (i.e., approx. 4Mparameters) plug-and-play adapter
of the initial LLM while remaining competitive on the task of pro-
gram repair.

Finally, in the third stage, the repair adapter is employed to fix
real-world bugs.

2.2 Target Bugs
The first consideration when designing a fine-tuning pipeline for
program repair is the bugs we aim to fix. This relates to 1) the
programming language, 2) the type of bugs (syntax errors, runtime
errors, functional errors, etc), and, 3) the difficulty of bugs, which
can be proxied by the code span to modify in order to fix the bug.

In this work, we focus on 1) Java bugs, 2) that are functional,
and come with at least a failing test case, and, 3) that are intra-
procedural with any length of the code span, i.e. that can be fixed
with changes to a single function (called hereafter single-function
bugs).

Note that we do want to support bugs that require changes in
multiple locations in the function [48], beyond single-line or single-
chunk bugs.

2.3 Choice of the Initial LLM
Choosing the suitable initial LLM for fine-tuning is crucial. For
example, when fine-tuning for code-related tasks, an LLM pre-
trained on large-scale code corpora is more effective than one pre-
trained on pure natural language data. To effectively fine-tune an
LLM for APR, we curate three criteria to choose the initial model.

First, the LLM should be publicly available and open-source.
Fine-tuning a closed-source LLM on the task-specific dataset is not
a valid option. Although some companies like OpenAI do provide
an API for fine-tuning their LLMs, it is expensive, and the owner-
ship of the final model (incl. weights) does not meet open-science
reproduction criteria. Open-source models, such as LLaMA [36] or
StarCoder [23], publish model weights online, allowing anyone to
modify and deploy them.

Second, the LLM should be pre-trained with large-scale code
data. As observed by related work [23, 32], LLMs pre-trained on
massive code data achieve better performance in code-related tasks.
Thus, we consider only LLMs specialized on code.

Third, the initial LLM should have been trained with an infilling
objective [3] during pre-training. As observed by related work
[17], infilling is a natural and effective learning objective for the
program repair task, since it allows the model to synthesize code
according to both the context appearing before and after. It should
also be supported by an off-the-shelf parameter-efficient fine-tuning
library.

In subsection 3.2 we instantiate those criteria in the context of
functional program repair for Java.

2.4 Choice of Code Representations
Source code representation is a critical aspect that significantly
impacts the effectiveness of the model [29]. In this section, we
discuss key characteristics of the source code representation design
space. We introduce, motivate, and elaborate on input and output
code representations specific to the program repair task.

2.4.1 Representation of Fault Localization. Virtually all the APR
literature assumes line-based fault localization, with a single line
given as input to the repair algorithm. This is not appropriate to
fix multi-location bugs [33, 48]. Consider Figure 3 (OR4), which
shows the canonical patch for the multi-location bug Chart-5 from
Defects4J. In this case, fault localization must identify a location
where an entirely new if block should be synthesized and inserted
as well as another pre-existing if condition, appearing later in the
code. To our knowledge, there is no fault localization technique
able to predict tuples of blocks to be repaired together.

In this paper, we propose a novel way to represent fault localiza-
tion information: our core idea is to represent fault localization not
as a single line, but as a region. In RepairLLaMA, we encode fault
localization as a span ranging from the beginning of the suspicious
region to its end. This encoding is realistic because 1) identifying a
buggy method is within reach of existing fault localization methods,
and 2) exhaustively listing all suspicious code regions of a buggy
method is worst-case 𝑂 (𝑛2) in the number of method lines.

2.4.2 Input Representation Space. In APR, the design space of the
input representation relates to what is shown from the buggy code
and to the presence of additional information. For example, fault
localization signals can be useful in scoping down where the code
should bemodified. However, such informationmight not be seen at
the pre-training stage. For the LLM to utilize it, one must represent
it in a way that it can learn during fine-tuning. To study the input
representation space, we design four input representations tailored
to APR (Figure 2):

https://anonymous.4open.science/r/repairllama-BC13
https://anonymous.4open.science/r/repairllama-BC13
https://repairllama.github.io
https://repairllama.github.io

RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair Conference’17, July 2017, Washington, DC, USA

Patches

Fine-tuning dataset

LLM

Pre-trained LLM

1) RepairLLaMA Core Choices

2) RepairLLaMA Fine-Tuning

if (dataset != null) {
 return result;
}

- if (dataset != null) {
+ if (dataset == null) {

Input Output

Code Representations

LLM
Frozen pre-trained

LLM
Small empty

LoRA

+

Parameter-Efficient
Fine-Tuning

Repair Adapter

Model Result

Samples

3) RepairLLaMA Inference

Fault
Localization

+ ...

Code
Repr.

+

Buggy
Program

Patches

Fine-tuning dataset

+ ...

Code
Repr.

Fault
Localization

+

Candidate
Patches

LLM
Pre-trained LLM

+
Repair Adapter

Figure 1: Overview of RepairLLaMA. The core novelties of RepairLLaMA are the APR specific code representations and the
engineering of an effective program repair adapter that is plugged into the underlying LLM.

IR1: Buggy function This naive representation describes the
code in the standard format as it is written, simply as text. Figure 2
(IR1) shows the buggy function of the multi-location bug Chart-
5, a Defects4J bug. The advantage of IR1 is that it is the same
representation LLMs observe during pre-training. When using this
representation, themain limitation is that themodel has no access to
fault localization information and, thus, needs to determine where
to change the code, which can be considered as implicit anomaly
detection.

IR2: Buggy function w/ FL comments This representation
adds two comments signaling the start and end of the buggy chunk
of code. For example, in Figure 2 (IR2), the three lines between the
start and end of the suspicious region are surrounded by comments
signaling the beginning and end of the buggy chunk. By providing
fault localization information, the model can scope its changes to
the buggy section.

IR3: Buggy function w/ infilling mask This representation
uses the infilling scheme some LLMs are trained for during pre-
training [3]. The buggy chunk is replaced by the infilling token,
which prompts the model to fill it. For example, in Figure 2 (IR3), the
three lines between the start and end of the suspicious region are
replaced by the <FILL_ME> token. This representation yields shorter
inputs and requires less fine-tuning since the infilling objective has
been used during pre-training. However, by masking the buggy
portion of code, this representation incurs information loss that
can be useful to generate a fix.

IR4: Buggy function w/ infilling mask and buggy code
This representation combines the buggy code with the infilling
scheme. The buggy code is shown in a comment at the end of the
prefix portion. For example, in Figure 2 (IR4), the buggy lines are
kept in comments, and the <FILL_ME> token is placed immediately

afterward. This representation is different from the one learned
during pre-training and requires fine-tuning. Code found in the
wild would typically not include buggy code as comments, which is
considered bad practice. Yet, with fine-tuning, this representation
might add valuable information to the infilling scheme.

2.4.3 Output Representation Space. Output representations in APR
correspond to the representation of the synthesized fixed code. A
natural output representation is a diff over the buggy code, aka a
patch. As discussed in subsubsection 2.4.2, fine-tuning is required to
adapt an LLM to generate such task-specific outputs. To study the
output representation space, we design four output representations
tailored to APR (Figure 3):

OR1: Fixed function The naive output is the full fixed function.
It is not a diff. Figure 3 (OR1) shows the fixed function of the
multi-location bug Chart-5. The major drawback of OR1 is that
such output may be much larger than the actual code changes for
fixing, and LLMs are known to be more effective at generating short
sequences over long sequences.

OR2: Fixed chunk In this representation, the output is com-
posed of the fixed chunk of code to replace the buggy chunk of
code. The advantage is that the fixed chunk is typically shorter than
the full function, i.e. shorter than OR1. For example, in Figure 3
(OR2), only 6 fixed lines are outputted. OR2 requires an input rep-
resentation that includes fault localization (i.e. IR2, IR3, IR4) since
the output contains no information regarding what to replace.

OR3: Three-line context-diff The output is a typical contex-
tual diff with a three-line context, aka a unified diff. For example, in
Figure 3 (OR3), a unified diff of the statement change is outputted.
The main challenge of this representation is that the model needs
to learn to locate the bug locations during fine-tuning, which is

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

Input Representations

IR2

public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
 }
 // buggy code starts:
 XYDataItem overwritten = null;
 int index = indexOf(x);
 if (index >= 0 && !this.allowDuplicateXValues) {
 // buggy code ends
 ...
 }
 fireSeriesChanged();
 return overwritten;
}

IR3

public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
 }
 <FILL_ME>
 ...
 }
 fireSeriesChanged();
 return overwritten;
}

IR4

public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
 }
 // buggy code
 // XYDataItem overwritten = null;
 // int index = indexOf(x);
 // if (index >= 0 && !this.allowDuplicateXValues) {
 <FILL_ME>
 ...
 }
 fireSeriesChanged();
 return overwritten;
}

IR1

public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
 }
 XYDataItem overwritten = null;
 int index = indexOf(x);
 if (index >= 0 && !this.allowDuplicateXValues) {
 ...
 }
 fireSeriesChanged();
 return overwritten;
}

Figure 2: Buggy code of the multi-location bug Chart-5 rep-
resented in our four different input representations.

difficult. Additionally, this representation is also lengthier than
generating a fixed chunk (OR2) only.

OR4: One-line context-diff The output is a contextual diff
with a shorter, one-line context. OR4 uses a one-line diff context,
making it shorter than OR3. For example, in Figure 3 (OR4), there
are five source code lines less when compared with OR3. Despite
this, it is still lengthier than OR2 and also requires the model to
learn where to apply the patch.

Table 1: Possible code representation pairs for fine-tuning
LLMs for automated program repair. They exploit the char-
acteristics of the APR task, incl. the presence of fault local-
ization signals and the notion of “buggy code”.

Code Representations FL Aligned w/ PT Buggy Code
IR1 x OR1 ✗ ✔/ ✗ ✔

IR1 x OR3 ✗ ✔/ ✗ ✔

IR1 x OR4 ✗ ✔/ ✗ ✔

IR2 x OR2 ✔ ✗/ ✔ ✔

IR3 x OR2 ✔ ✔/ ✔ ✗

IR4 x OR2 ✔ ✗/ ✔ ✔

Output Representations

OR1

public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
 }
 if (this.allowDuplicateXValues) {
 add(x, y);
 return null;
 }
 XYDataItem overwritten = null;
 int index = indexOf(x);
 if (index >= 0) {
 ...
 }
 fireSeriesChanged();
 return overwritten;
}

OR2

 if (this.allowDuplicateXValues) {
 add(x, y);
 return null;
 }
 XYDataItem overwritten = null;
 int index = indexOf(x);
 if (index >= 0) {

OR3

 public XYDataItem addOrUpdate(Number x, Number y) {
 if (x == null) {
 throw new IllegalArgumentException("Null 'x' argument.");
+ }
+ if (this.allowDuplicateXValues) {
+ add(x, y);
+ return null;
 }
 XYDataItem overwritten = null;
 int index = indexOf(x);
- if (index >= 0 && !this.allowDuplicateXValues) {
+ if (index >= 0) {
 XYDataItem existing = (XYDataItem) this.data.get(index);
 try {
 overwritten = (XYDataItem) existing.clone();

OR4

 throw new IllegalArgumentException("Null 'x' argument.");
+ }
+ if (this.allowDuplicateXValues) {
+ add(x, y);
+ return null;
 }
@@
 int index = indexOf(x);
- if (index >= 0 && !this.allowDuplicateXValues) {
+ if (index >= 0) {
 XYDataItem existing = (XYDataItem) this.data.get(index);

Figure 3: Patch for multi-location bug Chart-5 represented
in our four different output representations.

2.4.4 Input/Output Representation Pairs. To utilize an LLM for
APR, input and output representations must be carefully paired.
This is because all input representations cannot be paired with
all output representations. For instance, IR1 cannot pair with OR2
since one cannot apply a fixed chunk to the buggy function without
the fault localization information. Table 1 provides the list of the
code representation pairs that are studied in this paper. Each row
corresponds to a code representation pair. Column FL indicates
whether the pair includes or not fault localization information. Col-
umn Aligned w/ PT provides a relative assessment of the alignment
of the representation w.r.t. the pre-training data/objective. A red
cross means that the code representation is not aligned with the
pre-training data and objective. The left side shows the input and
the right the output representations. Column Buggy Code indicates
whether the pair includes or not the original buggy code.

The first three rows (i.e., IR1xOR1, IR1xOR3, IR1xOR4) include
code representation pairs that do not contain fault localization
signals. The input is the same across all pairs (IR1), whereas the
output can either be the full fixed function (OR1) or a diff (OR3,
OR4). The key difference between the pairs is the output length
and format.

The latter three rows (i.e., IR2xOR2, IR3xOR2, IR4xOR2) include
code representation pairs that contain fault localization information,

RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair Conference’17, July 2017, Washington, DC, USA

either as tokens or as infilling, which is specific to program repair.
The most aligned representation with pre-training is IR3xOR2 since
the pre-trained model has support for infilling. IR2 represents the
infilling objective with never-before-seen comments, whereas IR4
keeps the buggy code as comments. The natural output representa-
tion to pair with these is OR2 since it only includes the new code
to replace the already localized buggy chunk, minimizing output
length. Note that we have empirically tested other combinations in
a pilot experiment, and the ones not listed in Table 1 underperform.

2.5 Choice of Fine-Tuning Dataset
After choosing an initial model and appropriate code representa-
tions, the next step is to curate a fine-tuning dataset. First, the
dataset must be relevant to the task at hand. In the APR task, a rele-
vant dataset usually includes pairs of buggy and fixed code samples.
Second, the type of samples included should be similar to the target
bugs. Third, the size of the dataset should be considered. A larger
dataset generally leads to better model performance as it provides
more examples for the model to fine-tune from. However, it is im-
portant to balance size with quality - a smaller, high-quality dataset
may be more beneficial than a larger, low-quality one. Fourth, the
diversity of the dataset is important. A diverse dataset that covers
a wide range of examples can help the model generalize better to
unseen data. Lastly, the legality and ethics of the dataset should be
considered, in particular regarding privacy and copyright.

2.6 Fine-Tuning Repair Adapters with LoRA
With the recent release of various LLMs, the scale of parameters
has significantly increased. For instance, state-of-the-art models
such as LLaMA [24] and CodeLLaMA [32] range from 7B to 70B
parameters. Fine-tuning these LLMs often requires substantial GPU
resources. As an example, Lv et al. [25] report that fine-tuning the
full parameters of LLaMA-7B on an RTX 3090 consumes 126.08
GB at peak GPU memory usage, with the batch size and sequence
length set to 1 and 1024 respectively. Fine-tuning current LLMs
with limited resources is a challenge.

RepairLLaMAuses LoRA [14], a state-of-the-art parameter-efficient
fine-tuning method. LoRA freezes the LLM and fine-tunes low-rank
matrices in each layer of the language model that are trainable. The
trained matrices compose an “adapter”, which is many orders of
magnitude smaller than the language model itself. In RepairLLaMA,
the repair adapter is a LoRA adapter, dedicated to the program
repair task.

2.7 Inference
The final step is to deploy the repair adapter. The target buggy
program is fed to a fault localization algorithm and processed to
generate an APR-specific code representation. Then, the code rep-
resentation is fed to the initial model combined with the LoRA
repair adapter, to generate a list of candidate patches for the buggy
program at hand. Patches are then checked for plausibility and
correctness per off-the-shelf techniques.

3 EXPERIMENTAL METHODOLOGY
3.1 Research Questions
In this work, we focus on the following research questions:

• RQ1 (Code Representations for Fine-Tuning): What is the
best code representation to fine-tune an LLM for program repair?
• RQ2 (Parameter-Efficient Fine-Tuning vs. Full Fine-Tuning):
How does parameter-efficient fine-tuning compare against full-
parameter fine-tuning for program repair?
• RQ3 (RepairLLaMA vs. ChatGPT-based APR) How does Re-
pairLLaMA compare against state-of-the-art ChatGPT-based pro-
gram repair?

3.2 Implementation
Model to Fine-Tune Per the criteria of subsection 2.3, we choose
CodeLlama-7b [32] as our initial LLM. CodeLLaMA is a publicly
available LLM released in 2023 and is trained on 500B code tokens.
Per the experiments reported in [32], CodeLLaMA outperforms
GPT-3.5 on two code generation benchmarks.
Fine-tuning Dataset We choose Megadiff [27] as the fine-tuning
dataset, and process all samples into the different code representa-
tions. First, the function pairs – each comprising a buggy version
and its fixed counterpart – are extracted along with their corre-
sponding diff identifiers. Subsequently, we eliminate pairs that do
not change single functions, and remove duplicate pairs through
textual comparison. After that, we compute our custom code repre-
sentations. We keep only samples whose total length (input plus
output) is shorter than 1024 tokens measured by the LLM tokenizer.
Consequently, the fine-tuning datasets range from 30,000 to 50,000
fine-tuning pairs (see our appendix repository).
Evaluation BenchmarkWe select two Java benchmarks for our
evaluation: Defects4J [22] and HumanEval-Java [17]. Following
recent related work [19, 43, 45], we scope our evaluation to single-
function bugs. Defects4J comprises 835 real-world bugs from 17
open-source Java projects, fromwhichwe identify 488 single-function
bugs. HumanEval-Java is a bug benchmark containing artificial bugs
inserted in HumanEval [4] Java programs. Contrary to Defects4J,
HumanEval-Java suffers from less data leakage in the pre-training
data since it is much more recent than Defects4J. HumanEval-Java
contains 164 single-function bugs.
Fine-Tuning We fine-tune CodeLLaMA with LoRA for each of
our curated code representations with the same hyper-parameter
settings: we set the learning rate to 5e-4 with cosine decay, max
input length to 1024, training epoch to 2, and batch size to 16 per
GPU, andwe use Adam_Was the optimizer. For LoRA, we use a rank
of 8, alpha of 16, dropout of 0.05, and inject the adaptation matrices
in the q_proj and v_proj layers. Using the same hyper-parameter
settings for each code representation ensures fair comparison. Each
fine-tuning run is executed on a server with 4xA100 40GB GPUs.
Inference In inference, we employ beam search as our decoding
strategy with a beam size of 10 per previous research [17]. Hence,
for each bug, we generate 10 candidate patches. We use the Hug-
gingFace transformers library to implement all fine-tuning and
inference experiments. Inference is run on a single A100 40GB
GPU.

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

3.3 Patch Assessment
Following related work [17, 43, 48], we compute the following re-
pair effectiveness metrics. A plausible patch is defined as one that
successfully passes all test cases. An exact match patch is textu-
ally identical to a developer-provided reference patch. To refine
our evaluation, we further assess the syntactical equivalence be-
tween the generated patches and the reference patches, through
AST match. This enables us to compute performance regardless
of formatting and indentation changes. This process involves con-
verting plausible and reference patches into abstract syntax trees
[31] and subsequently utilizing AST differencing [11] to compare
their ASTs for discrepancies. A plausible patch with no AST dif-
ferences compared to the reference patch is classified as an AST
match patch. It is also more scalable and accurate than manually
checking plausible patches for correctness without expertise in the
programs under repair. For all three metrics, the higher the metric,
the better the performance. We validate the candidate patches on a
workstation with an 18-core Intel Core i9-10980XE CPU and 128
GB of RAM, operating under Ubuntu 22.04.3 LTS.

3.4 Methodology for RQ1
The objective of RQ1 is to investigate the most effective code rep-
resentations for fine-tuning an LLM for program repair. While
existing research has delved into the utility of LLMs for program
repair, the impact of the code representations, such as their authen-
ticity, has been overlooked. Additionally, it is crucial to note that
variations in code representations may yield substantial differences
in performance for fine-tuned LLMs [15]. Consequently, in RQ1, we
curate 6 realistic code representations motivated in 2.4 and execute
a series of experiments to measure their performance. We fine-tune
an LLM as described in 3.2. We prompt the model to generate 10
patches for each bug using beam search decoding. We then evaluate
the generated patches as outlined in subsection 3.3, to measure the
effectiveness of each code representation.

Baseline. Since CodeLLaMA performs powerful zero-shot learn-
ing ability in other code-related tasks [32], we use the same method
to prompt CodeLLaMA-7B with the infilling scheme (IR3xOR2) on
our selected benchmark and take the result as the baseline, which
can help us better evaluate the performance of every code repre-
sentation and measure the effectiveness of fine-tuning.

3.5 Methodology for RQ2
The objective of RQ2 is to evaluate the respective effectiveness
of parameter-efficient and full-parameter fine-tuning. Generally,
parameter-efficient fine-tuning methods represent a trade-off be-
tween computational cost and model performance, which allows
us to train LLMs with limited computational resources. While tra-
ditional full-parameter fine-tuning approaches often yield better
results, they come at the expense of significantly higher memory
requirements and a large-scale fine-tuning dataset. In other words,
fully fine-tuning an LLM on a small fine-tuning dataset may drop
into the overfitting problem. We explore and compare the effective-
ness of parameter-efficient and full-parameter fine-tuning in the
specific context of program repair, which has never been done to
the best of our knowledge.

Baseline. We consider four baselines in RQ2. One is the baseline
considered in RQ1. The second one comprises the full-parameter
fine-tuned version of RepairLLaMA, a powerful but naive approach
to fine-tuning a large language model for program repair. Here,
we use the same hyper-parameters as in LoRA fine-tuning, apart
from a lower learning rate of 2e-5. The third is Jiang et al.’s work
[17], where several LLMs are fully fine-tuned for program repair.
We compare against the best performing model reported, the fine-
tuned version of Incoder-6B [12]. The last one is RAP-Gen [39], the
current state-of-the-art fine-tuned LLM for program repair. Its key
novelty is to use relevant fix patterns retrieved from a codebase of
previous bug-fix pairs to augment the buggy input, which guides
the model to generate accurate patches by learning from historical
repair examples.

3.6 Methodology for RQ3

There’s a bug in the Java program below. Try to fix it and return the
complete fix for the code in the form of the markdown code block.
Generate the code to replace the <FILL_ME> token.

[Buggy function represented with IR4xOR2]

Figure 4: The prompt used to prompt GPT-3.5 and GPT-4 as
a strong baseline to generate patches.

The objective of RQ3 is to study how RepairLLaMA compares
against state-of-the-art ChatGPT-based program repair. Recently,
related work [45, 51] has shown that GPT-3.5-Turbo and GPT-4
achieve state-of-the-art results on program repair. To this end, we
compare RepairLLaMA in two experiments.

First, we zero-shot prompt gpt-3.5-turbo-0613 and gpt-4-0613 to
generate 10 patches for each bug. The prompt is shown in Figure 4,
which is built by integrating an effective prompt from Zhang et al.’s
work and our curated best code representation. It instructs LLMs
to generate the fixed code chunk to replace the <FILL_ME> token.

Second, we compare RepairLLaMA with ChatRepair on De-
fects4J v1.2, since ChatRepair’s authors mainly evaluate it on single-
function bugs in Defects4 v1.2. To the best of our knowledge, Cha-
tRepair achieves state-of-the-art performance on Defects4J, and
such a comparison enables us to fully evaluate the effectiveness
of RepairLLaMA. We utilize OpenAI’s official APIs to call gpt-3.5-
turbo-0613 to conduct related experiments on Dec. 1, 2023.

4 EXPERIMENTAL RESULTS
4.1 Results of RQ1 (Code Representations for

Fine-Tuning)
In RQ1, we investigate the most effective code representations for
fine-tuning an LLM for program repair. The results of the evalu-
ation are presented in Table 2, which shows the effectiveness of
each code representation setting on both test benchmarks. The
table is structured as follows: the first column displays the code
representations used to fine-tune CodeLLaMA-7B, the second and

RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair Conference’17, July 2017, Washington, DC, USA

Table 2: Repair results of different code representations for fine-tuning an LLM for program repair. Our bestmodel, RepairLLaMA
using IR4xOR2, significantly improves over the baseline in both test benchmarks.

Code Representations
Defects4J v2
(488 bugs)

HumanEval-Java
(164 bugs)

Plausible AST Match Exact Match Plausible AST Match Exact Match

IR3 x OR2 (baseline, no fine-tuning) 133 71 52 107 81 71

IR1 x OR1 79 31 29 78 54 52

IR1 x OR3 41 17 15 39 21 21

IR1 x OR4 12 2 2 5 2 2

IR2 x OR2 198 122 121 118 77 69

IR3 x OR2 154 87 84 103 68 63

IR4 x OR2 (RepairLLaMA) 195 125 124 118 82 75

third meta-columns show the repair effectiveness results on, respec-
tively, Defects4J v2 (single-function) and HumanEval-Java (single-
function). Recall that the repair effectiveness evaluation is measured
by three metrics described in subsection 3.3.

Our baseline uses the original non-fine-tuned CodeLLaMA-7B
with the IR3xOR2 code representation. Recall that this is the most
effective way to prompt the non-fine-tuned model as discussed
in subsection 3.4. Our results show that it plausibly repairs 133
Defects4J v2 and 107 HumanEval-Java bugs. Moreover, it correctly
repairs 52 Defects4J v2 and 71 HumanEval-Java bugs with patches
that textually exactly match the developer-written ones. Further-
more, when considering AST match, it can repair 71 Defects4J v2
and 81 HumanEval-Java bugs with patches that are syntactically
equal to the developer-written ones.

The fine-tuned model’s effectiveness depends on the code rep-
resentations. First, we observe that the three code representation
pairs that do not have access to fault localization (IR1xORX) per-
form considerably worse than both the baseline and other code
representations. These results show that fault localization signals
are crucial for program repair. To that extent, all representations
that simply use the full function as the input and ask to “fix the
bug”, can be considered too naive. Our work demonstrates that
tailoring code representations with fault localization is a necessary
step in the context of program repair. No pre-training objective has
access to fault-localization signals, which further validates the need
for fine-tuning.

Second, we observe that, within code representations that use
fault localization signals, fine-tuned models significantly outper-
form the baseline on Defects4J v2 compared to the baseline (first
row). For the same code representation as the baseline (first row),
the fine-tuned model (sixth row, IR3xOR2) can plausibly repair 154
(+21) bugs, exactly repair 84 bugs (+32), and syntactically correctly
repair 87 bugs (+16), respectively.

When considering the remaining two code representations (IR2xOR2,
IR4xOR2), the fine-tuned models perform even better. The best
model, RepairLLaMA, fine-tuned with the code representation
IR4xOR2, plausibly repairs 195 (+62) Defects4J bugs than the base-
line, exactly repairs 124 (+72), and syntactically correctly repair
125 bugs (+54), respectively. These results show that fine-tuning

the initial LLM with repair-specific representations significantly
improves the repair effectiveness over a non-fine-tuned model. Tai-
lored code representations with bug localization signals allow the
fine-tuned model to repair more bugs because these signals enable
it to pay more attention to the buggy code.

To strengthen the external validity of our analysis beyond De-
fects4J, we perform the same experiment on HumanEval-Java. On
HumanEval-Java, RepairLLaMA also achieves better repair effec-
tiveness than the baseline (75 vs 71 exact match and 82 vs 81 ast
match), confirming the results observed on Defects4J.

Third, we discuss the alignment between the repair-specific code
representation and the pre-training objectives. IR2 and IR4 are input
representations that include the same signals: the original function,
fault localization, and the original buggy code. However, we see a
performance gap between both representations. IR4 uses the same
infilling scheme during pre-training while providing bug location
signals by including the original buggy code in comments. IR2, on
the other hand, mimics a similar scheme but provides bug location
signals through fault localization comments, which is further away
from the pre-training distribution. This difference explains the
differences between IR4xOR2 vs. IR2xOR2: the former has a lower
representation gap with pre-training, thus leading to better repair
effectiveness. This finding holds for both benchmarks (Defects4J
and HumanEval-Java) and for both metrics (Exact Match and AST
Match).

In addition to comparing performance, we explore the effec-
tiveness of our single-chunk prompting approach in addressing
multi-chunk bugs. Our findings reveal that RepairLLaMA correctly
repairs 30 instances of such bugs. For example, RepairLLaMA cor-
rectly fixes a complexmulti-chunk bug, Math-86, from the Defects4J
v2, as illustrated in Figure 5. Math-86 presents two error sections
that require simultaneous attention and correction: 1) the removal
of an if block that throws an exception, and 2) the introduction of a
new if condition. Note that these two sections have more than 20
lines of distance between each other, showing that RepairLLaMA
can fix bugs where the multiple edit locations are far away from
each other. To the best of our knowledge, RepairLLaMA is the first
program repair approach to correctly fix Math-86.

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

@@ -111,9 +111,6 @@
 final double[] lI = lTData[i];
- if (lTData[i][i] < absolutePositivityThreshold) {
- throw new NotPositiveDefiniteMatrixException();
- }
 for (int j = i + 1; j < order; ++j) {
 final double[] lJ = lTData[j];
@@ -134,6 +131,9 @@
 final double[] ltI = lTData[i];
+ if (ltI[i] < absolutePositivityThreshold) {
+ throw new NotPositiveDefiniteMatrixException();
+ }
 ltI[i] = Math.sqrt(ltI[i]);
 final double inverse = 1.0 / ltI[i];

Figure 5: Exact match patch generated by RepairLLaMA for
Math-86 from Defects4J v2. In this multi-location bug, Re-
pairLLaMA is able to fix two distant buggy locations.

@@ -6,16 +6,18 @@
 int CAP = 0;
 int SM = 0;
 for (char c : s.toCharArray()) {
- if (Character.toUpperCase(c) == c) SM += 1;
- if (Character.toLowerCase(c) == c) CAP += 1;
+ if (Character.toUpperCase(c) == c) CAP += 1;
+ if (Character.toLowerCase(c) == c) SM += 1;
 }
- val = CAP - SM;
- strong = s;
+ if (CAP - SM > val) {
+ val = CAP - SM;
+ strong = s;
+ }
 }
 return class_name + "." + strong;
 }

Figure 6: Exact match patch generated by RepairLLaMA
for STRONGEST_EXTENSION from HumanEval-Java. In this
multi-location bug, RepairLLaMAmodifies two if blocks and
encapsulates two other statements in a new if block.

Figure 6 shows another example of an exact match multi-location
patch generated by RepairLLaMA, which is for a HumanEval-Java
bug STRONGEST_EXTENSION. RepairLLaMA first swaps the state-
ments conditioned by the two existing if conditions, understanding
that the wrong counters are being incremented in each case. Then,
RepairLLaMA conditions the two statements updating the current
values of val and strong only if the difference between the counters
is greater than the already existing solution. Both this example
and Math-86 show the effectiveness of RepairLLaMA in repairing
multi-location bugs, thanks to tailored code representations that
represent fault localization information in a realistic manner.

Answer to RQ1: Our results demonstrate the importance
of designing code representations for fine-tuning LLMs
for APR. Naive representations such as full functions are
suboptimal, whether on the input or the output side of the
model. Our experiments show that the best code represen-
tation pair is IR4xOR2, because it leverages two signals spe-
cific to the program repair task at hand (fault localization
and the original buggy code) while maintaining alignment
with the pre-training objective of the initial model. The
model RepairLLaMA, fine-tuned with IR4xOR2, correctly
repairs 125 Defects4J bugs and 82 HumanEval-Java bugs.
This significant improvement in program repair capability
demonstrates the need for curated code representations in
automated program repair. While the community focuses
a lot on prompt engineering, our original experimental re-
sults encourage research on domain-specific, expert code
representations per downstream task in SE.

4.2 Results of RQ2 (Parameter-Efficient
Fine-Tuning vs. Full Fine-Tuning)

Table 3: Repair effectiveness of RepairLLaMA compared
with fully fine-tuned models. RepairLLaMA, trained with
parameter-efficient fine-tuning, outperforms all compara-
tive models on both Defects4J and HumanEval-Java.

Model
Defects4J v2
(488 bugs)

HumanEval-Java
(164 bugs)

Plausible AST Match Exact Match Plausible AST Match Exact Match

IR3 x OR2 (no fine-tuning) 133 71 52 107 81 71

IR4 x OR2 (full fine-tuning) 141 89 77 105 80 71

IR4 x OR2 (RepairLLaMA) 195 125 124 118 82 75

In RQ2, we study how parameter-efficient fine-tuning compares
against basic full-parameter fine-tuning. Recall that in most of the
closely related work in APR [17, 18, 35, 39, 42, 49], full-parameter
fine-tuning is the standard paradigm. On the contrary, in RepairL-
LaMA, all models are fine-tuned using LoRA, a parameter-efficient
fine-tuning technique that optimizes only a small adapter (approx.
4M parameters) instead of the whole LLM (approx. 7B parame-
ters, a reduction of approx. 1600x). This allows the model to 1) be
fine-tuned with less GPU memory, and 2) potentially reduce over-
fitting. In RQ2, we compare RepairLLaMA, built with the best code
representation in RQ1, with its full-parameter fine-tuning version.

Table 3 presents the results of RQ2. The table reads as follows.
The first column presents the model. The second and third meta-
columns show the repair effectiveness results on, respectively, De-
fects4J v2 (single-function) and HumanEval-Java.

The results show that RepairLLaMA with parameter-efficient
fine-tuning clearly outperforms both the baseline and its full-parameter
fine-tuning version. In Defects4J, RepairLLaMA plausibly repairs
54 bugs more and exactly repairs 47 more than the fully fine-tuned
model. When considering AST Match, RepairLLaMA also repairs
36 bugs more. In HumanEval-Java, although the improvement is
smaller, RepairLLaMA still outperforms all baselines.

The gain in performance is clear, and it also requires fewer re-
sources because it only needs to optimize a much smaller adapter

RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair Conference’17, July 2017, Washington, DC, USA

(i.e., approx. 4M parameters). Possibly, the fully fine-tuned model
may drop into overfitting due to the limited fine-tuning data, and
parameter-efficient fine-tuning helps prevent overfitting since it
only requires optimizing a small part of networkweights. Themodel
size constraints of LoRA appear to act as implicit regularizers.

When compared with the best fully fine-tuned model from Jiang
et al. [17], RepairLLaMA correctly repairs 56 Defects4J bugs more
and 12 HumanEval-Java bugs more. These results further validate
RepairLLaMA’s design choices, including the use of parameter-
efficient fine-tuning. Even when fully fine-tuning a similar model,
Incoder-6B in this case, RepairLLaMA still outperforms it.

To further evaluate RepairLLaMA, we also compare it with RAP-
Gen [39], the state-of-the-art program repair approach that fully
fine-tunes an LLM. RAP-Gen correctly repairs 125 Defects4J v2
bugs, according to the authors’ manual verification, when generat-
ing 100 patches generation per bug. RepairLLaMA also correctly
repairs the same number of Defects4J v2 bugs under the metric of
AST match. However, it achieves this feat by generating 10x fewer
patches for each bug, demonstrating the effectiveness of our fine-
tuning and code representation approach. Lastly, for multi-location
bugs, RAP-Gen assumes perfect multi-location fault localization,
whereas RepairLLaMA assumes a more realistic setting where only
the first and last buggy lines are identified, as discussed in subsub-
section 2.4.1.

Answer to RQ2: Parameter-efficient fine-tuning outper-
forms full fine-tuning in both Defects4J and HumanEval-
Java. The fair experimental comparison yields a clear-cut
result: performance is higher with an additional 36 cor-
rectly repaired bugs in Defects4J. Overall, our paper is the
first to demonstrate the advantage of parameter-efficient
fine-tuning in the context of automated program repair,
achieving strong state-of-the-art results. Beyond program
repair, parameter-efficient fine-tuning is feasible in aca-
demic labs for other software engineering tasks, while
still working with powerful multi-million dollar trained
models.

4.3 Results of RQ3 (RepairLLaMA vs.
ChatGPT-based APR)

In RQ3, we compare RepairLLaMA with state-of-the-art ChatGPT-
based program repair. ChatGPT-based program repair differs from
RepairLLaMA since it does not involve fine-tuning LLMs on task-
specific datasets. Instead, it involves designing effective prompt
strategies to instruct a powerful general-purpose LLM like GPT-4.

Table 4 shows the repair effectiveness of RepairLLaMA compared
with ChatGPT-based APR techniques. The first column indicates
the model name. The second, and third show the results on two
different benchmarks. Each benchmark is evaluated following the
three patch assessment metrics described in subsection 3.3.

Our results show that RepairLLaMA is the most effective model
across both benchmarks. GPT-3.5 and GPT-4 plausibly fix 63% and
38% less Defects4J v2 bugs than RepairLLaMA, respectively. Repair-
LLaMA fixes twice as many bugs as GPT4, with both the ASTmatch
and the exactmatchmetrics. RepairLLaMA also correctly repairs the
most HumanEval-Java bugs when compared with ChatGPT-based

techniques, which increases both internal and external validity. Re-
call that both GPT-3.5 and GPT-4 are significantly larger than the
RepairLLaMA model.

Finally, we compare against an even more sophisticated usage
of ChatGPT, iterative prompting, per the results of Xia et al. [45].
Based on the patches shared by the authors via private communi-
cation, RepairLLaMA correctly fixes, according to the AST match
metric, more Defects4J v2 bugs. Moreover, ChatRepair includes
more information in its prompts than RepairLLaMA does in its
input representation (IR4), including, for example, test execution
feedback: despite fewer repair signals, RepairLLaMA correctly fixes
more bugs, demonstrating the superiority of fine-tuning over itera-
tive prompting.

To conclude, these results demonstrate the power of specializing
in an LLM for APR. A smaller model, trained with a parameter-
efficient fine-tuning technique, ismore effective than a large general-
purpose LLM, either instructed with task-specific prompts or even
used in an advanced iterative manner. Overall, RepairLLaMA beats
the strong baseline of GPT-4 on all the considered benchmarks.

Answer to RQ3: RepairLLaMA beats state-of-the-art itera-
tive prompting and even beats GPT-4, thanks to the combi-
nation of appropriate code representations and parameter-
efficient fine-tuning. Our experiments demonstrate the
power of task specialization, with task specific engineering
and the training of a neural network adapter that distills
capabilities on the task at hand. The RepairLLaMA pro-
gram repair adapter is more powerful than ChatGPT for
fixing bugs in Java.

5 DISCUSSION
5.1 Sampling Candidate Patches
One key aspect of any program repair approach is the number of
generated candidate patches. Some recent works generate hundreds
and even thousands of patches for a single bug [39, 40, 44, 45].
However, the cost of evaluating such a large number of candidate
patches has been largely overlooked. Recall that to evaluate the
plausibility of each candidate patch, one must run the test cases,
which is expensive and even overcomes the one-time cost of fine-
tuning. In contrast to this trend, RepairLLaMA achieves state-of-
the-art results while generating only 10 candidate patches per bug.
This shows that 1) RepairLLaMA natively priorities the best patches
in the top-10 list, 2) RepairLLaMA minimizes the resources that are
required in an end-to-end repair pipeline that includes plausibility
checking.

5.2 Threats to Validity
The primary internal threat lies in the potential data leakage dur-
ing the pre-training phase of LLMs. LLMs are pre-trained on vast
corpora scrapped from the web, potentially including the same
data used for testing, endangering the reliability of experimental
results. To mitigate this threat, we assess all models on a recent
benchmark specifically designed to address the data leakage issue,
HumanEval-Java [17].

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

Table 4: RQ3: RepairLLaMA’s effectiveness compared with state-of-the-art ChatGPT-based APR techniques. RepairLLaMA is
more effective in finding correct and plausible patches in both test benchmarks, incl. against the strong baseline of GPT-4.

Model
Defects4J v2
(488 bugs)

HumanEval-Java
(164 bugs)

Plausible AST Match Exact Match Plausible AST Match Exact Match

GPT-3.5 73 34 24 50 62 107

GPT-4 121 61 48 124 74 64

RepairLLaMA (IR4 xOR2) 195 125 124 118 82 75

Another internal threat pertains to data leakage during the fine-
tuning process of LLMs, since both our fine-tuning dataset, Megad-
iff, and Defects4J, contain samples from GitHub. To address this
threat, we meticulously compare the samples in our fine-tuning
dataset, Megadiff, with those in Defects4J. We found no identical
samples shared by both datasets. However, it is worth noting that
there are three samples (Math-28, Math-44, and JacksonDatabind-
82) whose patch includes a function also found in Megadiff samples.
To mitigate this threat, we exclude these three Defects4J samples
from the evaluation of our fine-tuned models.

The main external threat is the focus on a single programming
language, as our results may not generalize to other languages.
To mitigate this threat, we evaluate on two benchmarks, including
well-establishedDefects4J [22]. Our core novelties are programming
language agnostic and should generalize to arbitrary languages.

6 RELATEDWORK
6.1 Large Language Models for Program Repair
Fine-Tuning. Several works [17, 18, 20, 30, 35, 39, 42, 49, 50, 53] have
proposed fine-tuning large language models for the program repair
task. Notably, Jiang et al. [17] specifically study the impact of fine-
tuning LLMs for program repair, reporting improvements lower
than ours while using naive full-parameter fine-tuning. Huang et al.
[15] also study different aspects of fine-tuning LLMs for program
repair, including code representations and evaluationmetrics.While
they report state-of-the-art performance, it is achieved under the
unrealistic assumption of perfect multi-line fault localization, which
RepairLLaMA does not assume.

Overall, our work distinguishes itself from related work in three
key aspects. First, we have designed and evaluated several code
representations in RepairLLaMA, tailored to fine-tuning LLMs for
program repair, which incorporate fault localization signals under
realistic assumptions. This is different from previous work (e.g.,
[15, 39]) which assumes perfect multi-line fault localization. Second,
RepairLLaMA is the first to employ LoRA to fine-tune LLMs for pro-
gram repair, demonstrating that parameter-efficient fine-tuning can
surpass full-parameter fine-tuning while reducing computational
requirements. Third, unlike some previous work that generates
hundreds, even thousands of patches for each bug, our best model,
RepairLLaMA, improves state-of-the-art performance on Defects4J
and HumanEval-Java with a budget of just 10 patches per bug,
demonstrating the laser-style focus of the trained program repair
adapter.

Prompting. Recent related work [2, 10, 16, 40, 43–45, 51] uses
LLMs for program repair, without fine-tuning. The core of these
works is prompting: they design and evaluate different prompting
strategies to provide repair signals to the model, and guide the
model to generate good patches.

Our work is fundamentally different from them since RepairL-
LaMA explicitly optimizes themodel weights by parameter-efficient
fine-tuning which is not the case of prompt-based research. The
RepairLLaMA program adapter completely embodies the program
repair knowledge. Also, unlike most prompt-based program repair
approaches that generate hundreds of patches for a single bug, our
model achieves state-of-the-art performance generating only 10
patches per bug.

6.2 Code Representations for Program Repair
Several code representations for program repair have been proposed
by related work [1, 5, 6, 8, 13, 28, 29, 46, 47]. Notably, Namavar et al.
[29] investigate the impact of different code representations for
program repair for a restricted set of bug classes. Differently, our
work targets a larger spectrum of bugs, including multi-location
bugs.

Overall, our work distinguishes itself from preceding research
in code representation in three dimensions. First, we design code
representations that are aligned with the pre-training data and ob-
jectives, enabling the RepairLLaMA to well utilize the pre-learned
knowledge. Second, our code representations are designed to sup-
port a large spectrum of bugs, including multi-location bugs, which
is one frontier of program repair. Third, RepairLLaMA’s pipeline
and evaluation are not constructed under the unrealistic perfect
fault localization for multi-location bugs.

6.3 Parameter-Efficient Fine-Tuning in SE
Parameter-efficient fine-tuning is a relatively under-explored area
in Software Engineering.Wang et al. [38] explore parameter-efficient
fine-tuning techniques for specializing LLMs for code search and
code summarization, finding that parameter-efficient fine-tuning
outperforms in-context learning. Weyssow et al. [41] confirm the
dominance of parameter-efficient fine-tuning techniques over zero-
shot learning in code generation, while Wang et al. [37] find that
prompt-tuning outperforms traditional fine-tuning methods in code
summarization. CodePrompt [9] proposes corpus-specific prompt
templates similar to adaptations and boosts code generation per-
formance. Lastly, Shi et al. [34] propose a parameter-efficient fine-
tuning technique for code related tasks that selectively freezes
layers of the model.

RepairLLaMA: Efficient Representations and Fine-Tuned Adapters for Program Repair Conference’17, July 2017, Washington, DC, USA

Overall, we are the first to employ and evaluate LoRA to fine-
tune LLMs for program repair. RepairLLaMA’s effectiveness calls
for more work in parameter-efficient fine-tuning in program repair
and related tasks such as overfitting detection.

7 CONCLUSION
In this paper, we have proposed RepairLLaMA, a novel program
repair approach that combines parameter-efficient fine-tuning with
program repair specific code representations. RepairLLaMA’s code
representations are unique in incorporating repair signals, such
as fault localization, under realistic assumptions, and in aligning
with pre-training data and objectives. To validate RepairLLaMA, we
perform a series of extensive experiments on two benchmarks, incl.
Defects4J andHumanEval-Java. Our results clearly validate our core
design decisions, with RepairLLaMA correctly fixing 125 Defects4J
and 82 HumanEval-Java bugs, outperforming strong baselines, incl.
GPT-3.5 and GPT-4. RepairLLaMA opens an avenue for research
on different kinds of efficient fine-tuning for program repair.

REFERENCES
[1] Kumar Abhinav, Vijaya Sharvani, Alpana Dubey, Meenakshi D’Souza, Nitish

Bhardwaj, Sakshi Jain, and Veenu Arora. 2021. Repairnet: contextual sequence-
to-sequence network for automated program repair. In International Conference
on Artificial Intelligence in Education. Springer, 3–15.

[2] Toufique Ahmed and Premkumar Devanbu. 2023. Majority Rule: better patching
via Self-Consistency. arXiv preprint arXiv:2306.00108 (2023).

[3] Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine
McLeavey, Jerry Tworek, and Mark Chen. 2022. Efficient training of language
models to fill in the middle. arXiv preprint arXiv:2207.14255 (2022).

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira
Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman,
et al. 2021. Evaluating large language models trained on code. arXiv preprint
arXiv:2107.03374 (2021).

[5] Zimin Chen, Vincent J Hellendoorn, Pascal Lamblin, Petros Maniatis, Pierre-
AntoineManzagol, Daniel Tarlow, and SubhodeepMoitra. 2021. PLUR: A unifying,
graph-based view of program learning, understanding, and repair. Advances in
Neural Information Processing Systems 34 (2021), 23089–23101.

[6] Zimin Chen, Steve Kommrusch, and Martin Monperrus. 2022. Neural transfer
learning for repairing security vulnerabilities in c code. IEEE Transactions on
Software Engineering 49, 1 (2022), 147–165.

[7] Zimin Chen, Steve Kommrusch, Michele Tufano, Louis-Noël Pouchet, Denys
Poshyvanyk, and Martin Monperrus. 2019. Sequencer: Sequence-to-sequence
learning for end-to-end program repair. IEEE Transactions on Software Engineering
47, 9 (2019), 1943–1959.

[8] Z. Chen, S. J. Kommrusch, M. Tufano, L. Pouchet, D. Poshyvanyk, and M. Mon-
perrus. 2019. SEQUENCER: Sequence-to-Sequence Learning for End-to-End
Program Repair. IEEE Transactions on Software Engineering (2019).

[9] YunSeok Choi and Jee-Hyong Lee. 2023. CodePrompt: Task-Agnostic Prefix
Tuning for Program and Language Generation. In Findings of the Association for
Computational Linguistics: ACL 2023. 5282–5297.

[10] Pantazis Deligiannis, Akash Lal, NikitaMehrotra, andAseemRastogi. 2023. Fixing
Rust Compilation Errors using LLMs. arXiv preprint arXiv:2308.05177 (2023).

[11] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez, and Martin
Monperrus. 2014. Fine-grained and accurate source code differencing. In Pro-
ceedings of the 29th ACM/IEEE international conference on Automated software
engineering. 313–324.

[12] Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang, Eric Wallace, Freda Shi,
Ruiqi Zhong, Wen-tau Yih, Luke Zettlemoyer, and Mike Lewis. 2022. Incoder: A
generative model for code infilling and synthesis. arXiv preprint arXiv:2204.05999
(2022).

[13] Rahul Gupta, Soham Pal, Aditya Kanade, and Shirish Shevade. 2017. DeepFix:
Fixing Common C Language Errors by Deep Learning. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence (San Francisco, California,
USA) (AAAI’17). AAAI Press, 1345–1351.

[14] Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu
Wang, Weizhu Chen, et al. 2021. LoRA: Low-Rank Adaptation of Large Language
Models. In International Conference on Learning Representations.

[15] Kai Huang, Xiangxin Meng, Jian Zhang, Yang Liu, Wenjie Wang, Shuhao Li, and
Yuqing Zhang. 2023. An Empirical Study on Fine-Tuning Large Language Models
of Code for Automated Program Repair. In 2023 38th IEEE/ACM International

Conference on Automated Software Engineering (ASE). IEEE Computer Society,
1162–1174.

[16] Qing Huang, Jiahui Zhu, Zhenchang Xing, Huan Jin, Changjing Wang, and Xiwei
Xu. 2023. A Chain of AI-based Solutions for Resolving FQNs and Fixing Syntax
Errors in Partial Code. arXiv preprint arXiv:2306.11981 (2023).

[17] N. Jiang, K. Liu, T. Lutellier, and L. Tan. 2023. Impact of Code Language Models
on Automated Program Repair. In 2023 IEEE/ACM 45th International Conference
on Software Engineering (ICSE). 1430–1442.

[18] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. CURE: Code-Aware Neural Ma-
chine Translation for Automatic Program Repair. In Proceedings of the ACM/IEEE
43rd International Conference on Software Engineering.

[19] Nan Jiang, Thibaud Lutellier, and Lin Tan. 2021. Cure: Code-aware neural machine
translation for automatic program repair. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 1161–1173.

[20] Matthew Jin, Syed Shahriar, Michele Tufano, Xin Shi, Shuai Lu, Neel Sundaresan,
and Alexey Svyatkovskiy. 2023. Inferfix: End-to-end program repair with llms.
arXiv preprint arXiv:2303.07263 (2023).

[21] Harshit Joshi, José Cambronero Sanchez, Sumit Gulwani, Vu Le, Gust Verbruggen,
and Ivan Radiček. 2023. Repair is nearly generation: Multilingual program repair
with llms. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 37.
5131–5140.

[22] Rene Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of
existing faults to enable controlled testing studies for Java programs. In Proceed-
ings of the 2014 International Symposium on Software Testing and Analysis. ACM,
437–440.

[23] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
Chenghao Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, et al. 2023.
StarCoder: may the source be with you! arXiv preprint arXiv:2305.06161 (2023).

[24] Junyi Lu, Lei Yu, Xiaojia Li, Li Yang, and Chun Zuo. 2023. LLaMA-Reviewer:
Advancing Code Review Automation with Large Language Models through
Parameter-Efficient Fine-Tuning (Practical Experience Report). arXiv preprint
arXiv:2308.11148 (2023).

[25] Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu.
2023. Full Parameter Fine-tuning for Large Language Models with Limited
Resources. arXiv preprint arXiv:2306.09782 (2023).

[26] Martin Monperrus. 2018. Automatic software repair: A bibliography. ACM
Computing Surveys (CSUR) 51, 1 (2018), 1–24.

[27] Martin Monperrus, Matias Martinez, He Ye, Fernanda Madeiral, Thomas Durieux,
and Zhongxing Yu. 2021. Megadiff: A Dataset of 600k Java Source Code Changes
Categorized by Diff Size. arXiv:2108.04631 [cs.SE]

[28] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,
Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro von Werra, and Shayne
Longpre. 2023. Octopack: Instruction tuning code large language models. arXiv
preprint arXiv:2308.07124 (2023).

[29] Marjane Namavar, Noor Nashid, and Ali Mesbah. 2022. A controlled experiment
of different code representations for learning-based program repair. Empirical
Software Engineering 27, 7 (2022), 190.

[30] Rishov Paul, MdMohibHossain,Mohammed Latif Siddiq, MasumHasan, Anindya
Iqbal, and Joanna CS Santos. [n. d.]. Enhancing Automated Program Repair
through Fine-tuning and Prompt Engineering. ([n. d.]).

[31] Renaud Pawlak, Martin Monperrus, Nicolas Petitprez, Carlos Noguera, and Lionel
Seinturier. 2015. Spoon: A Library for Implementing Analyses and Transforma-
tions of Java Source Code. Software: Practice and Experience 46 (2015), 1155–1179.
https://doi.org/10.1002/spe.2346

[32] Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiao-
qing Ellen Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023. Code
llama: Open foundation models for code. arXiv preprint arXiv:2308.12950 (2023).

[33] Seemanta Saha, Ripon K. Saha, and Mukul R. Prasad. 2019. Harnessing Evolution
for Multi-Hunk Program Repair. In Proceedings of the 41st International Conference
on Software Engineering (ICSE ’19). 13–24.

[34] Ensheng Shi, Yanlin Wang, Hongyu Zhang, Lun Du, Shi Han, Dongmei Zhang,
and Hongbin Sun. 2023. Towards Efficient Fine-tuning of Pre-trained Code
Models: An Experimental Study and Beyond. arXiv preprint arXiv:2304.05216
(2023).

[35] Atsushi Shirafuji, Md Mostafizer Rahman, Md Faizul Ibne Amin, and Yutaka
Watanobe. 2023. Program Repair with Minimal Edits Using CodeT5. arXiv
preprint arXiv:2309.14760 (2023).

[36] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne
Lachaux, Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023. Llama: Open and efficient foundation language models. arXiv
preprint arXiv:2302.13971 (2023).

[37] Chaozheng Wang, Yuanhang Yang, Cuiyun Gao, Yun Peng, Hongyu Zhang,
and Michael R Lyu. 2022. No more fine-tuning? an experimental evaluation of
prompt tuning in code intelligence. In Proceedings of the 30th ACM Joint European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering. 382–394.

[38] Deze Wang, Boxing Chen, Shanshan Li, Wei Luo, Shaoliang Peng, Wei Dong,
and Xiangke Liao. 2023. One Adapter for All Programming Languages? Adapter

https://arxiv.org/abs/2108.04631
https://doi.org/10.1002/spe.2346

Conference’17, July 2017, Washington, DC, USA André Silva∗ , Sen Fang∗ , and Martin Monperrus

Tuning for Code Search and Summarization. arXiv preprint arXiv:2303.15822
(2023).

[39] Weishi Wang, Yue Wang, Shafiq Joty, and Steven CH Hoi. 2023. RAP-Gen:
Retrieval-Augmented Patch Generation with CodeT5 for Automatic Program
Repair. In Proceedings of the 31st ACM Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software Engineering. 146–158.

[40] Yuxiang Wei, Chunqiu Steven Xia, and Lingming Zhang. 2023. Copiloting the
Copilots: Fusing Large LanguageModels with Completion Engines for Automated
Program Repair. arXiv preprint arXiv:2309.00608 (2023).

[41] Martin Weyssow, Xin Zhou, Kisub Kim, David Lo, and Houari Sahraoui. 2023.
Exploring Parameter-Efficient Fine-Tuning Techniques for Code Generation with
Large Language Models. arXiv preprint arXiv:2308.10462 (2023).

[42] Chunqiu Steven Xia, Yifeng Ding, and Lingming Zhang. 2023. The Plastic Surgery
Hypothesis in the Era of Large Language Models. In 2023 38th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE). IEEE, 522–534.

[43] Chunqiu Steven Xia, Yuxiang Wei, and Lingming Zhang. 2022. Practical pro-
gram repair in the era of large pre-trained language models. arXiv preprint
arXiv:2210.14179 (2022).

[44] Chunqiu Steven Xia and Lingming Zhang. 2022. Less training, more repairing
please: revisiting automated program repair via zero-shot learning. In Proceedings
of the 30th ACM Joint European Software Engineering Conference and Symposium
on the Foundations of Software Engineering. 959–971.

[45] Chunqiu Steven Xia and Lingming Zhang. 2023. Keep the Conversation Go-
ing: Fixing 162 out of 337 bugs for $0.42 each using ChatGPT. arXiv preprint
arXiv:2304.00385 (2023).

[46] Michihiro Yasunaga and Percy Liang. 2020. Graph-based, self-supervised program
repair from diagnostic feedback. In International Conference on Machine Learning.

PMLR, 10799–10808.
[47] He Ye, Matias Martinez, Xiapu Luo, Tao Zhang, and Martin Monperrus. 2022.

Selfapr: Self-supervised program repair with test execution diagnostics. In Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–13.

[48] He Ye and Martin Monperrus. 2023. ITER: Iterative Neural Repair for Multi-
Location Patches. arXiv preprint arXiv:2304.12015 (2023).

[49] Wei Yuan, Quanjun Zhang, Tieke He, Chunrong Fang, Nguyen Quoc Viet Hung,
Xiaodong Hao, and Hongzhi Yin. 2022. CIRCLE: Continual repair across program-
ming languages. In Proceedings of the 31st ACM SIGSOFT International Symposium
on Software Testing and Analysis. 678–690.

[50] Jiyang Zhang, Sheena Panthaplackel, Pengyu Nie, Junyi Jessy Li, and Milos Glig-
oric. 2022. Coditt5: Pretraining for source code and natural language editing. In
Proceedings of the 37th IEEE/ACM International Conference on Automated Software
Engineering. 1–12.

[51] Quanjun Zhang, Tongke Zhang, Juan Zhai, Chunrong Fang, Bowen Yu, Weisong
Sun, and Zhenyu Chen. 2023. A Critical Review of Large Language Model on
Software Engineering: An Example from ChatGPT and Automated Program
Repair. arXiv preprint arXiv:2310.08879 (2023).

[52] Qihao Zhu, Zeyu Sun, Yuan-an Xiao, Wenjie Zhang, Kang Yuan, Yingfei Xiong,
and Lu Zhang. 2021. A Syntax-Guided Edit Decoder for Neural Program Repair.
In Proceedings of the 29th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Athens,
Greece) (ESEC/FSE 2021). ACM, 341–353.

[53] Armin Zirak and Hadi Hemmati. 2022. Improving automated program repair with
domain adaptation. ACM Transactions on Software Engineering and Methodology
(2022).

	Abstract
	1 Introduction
	2 RepairLLaMA: Efficient Fine-Tuning for Program Repair
	2.1 Overview
	2.2 Target Bugs
	2.3 Choice of the Initial LLM
	2.4 Choice of Code Representations
	2.5 Choice of Fine-Tuning Dataset
	2.6 Fine-Tuning Repair Adapters with LoRA
	2.7 Inference

	3 Experimental Methodology
	3.1 Research Questions
	3.2 Implementation
	3.3 Patch Assessment
	3.4 Methodology for RQ1
	3.5 Methodology for RQ2
	3.6 Methodology for RQ3

	4 Experimental Results
	4.1 Results of RQ1 (Code Representations for Fine-Tuning)
	4.2 Results of RQ2 (Parameter-Efficient Fine-Tuning vs. Full Fine-Tuning)
	4.3 Results of RQ3 (RepairLLaMA vs. ChatGPT-based APR)

	5 Discussion
	5.1 Sampling Candidate Patches
	5.2 Threats to Validity

	6 Related Work
	6.1 Large Language Models for Program Repair
	6.2 Code Representations for Program Repair
	6.3 Parameter-Efficient Fine-Tuning in SE

	7 Conclusion
	References

