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A B S T R A C T

Context: Developers tend to search and reuse code snippets from a large-scale codebase when they want to
implement some functions that exist in the previous projects, which can enhance the efficiency of software
development.
Objective: As the first deep learning-based code search model, DeepCS outperforms prior models such as
Sourcere and CodeHow. However, it utilizes two separate LSTM to represent code snippets and natural language
descriptions respectively, which ignores semantic relations between code snippets and their descriptions.
Consequently, the performance of DeepCS falls into the bottleneck, and thus our objective is to break this
bottleneck.
Method: We propose a self-attention joint representation learning model, named SAN-CS (Self-Attention
Network for Code Search). Comparing with DeepCS, we directly utilize the self-attention network to construct
our code search model. By a weighted average operation, self-attention networks can fully capture the
contextual information of code snippets and their descriptions. We first utilize two individual self-attention
networks to represent code snippets and their descriptions, respectively, and then we utilize the self-attention
network to conduct an extra joint representation network for code snippets and their descriptions, which can
build semantic relationships between code snippets and their descriptions. Therefore, SAN-CS can break the
performance bottleneck of DeepCS.
Results: We evaluate SAN-CS on the dataset shared by Gu et al. and choose two baseline models, DeepCS and
CARLCS-CNN. Experimental results demonstrate that SAN-CS achieves significantly better performance than
DeepCS and CARLCS-CNN. In addition, SAN-CS has better execution efficiency than DeepCS at the training
and testing phase.
Conclusion: This paper proposes a code search model, SAN-CS. It utilizes the self-attention network to perform
the joint attention representations for code snippets and their descriptions, respectively. Experimental results
verify the effectiveness and efficiency of SAN-CS.
. Introduction

Code search is a frequent activity in software development, which
an help developers to find suitable code snippets in their projects.
t helps improve developers’ productivity and shorten the product
evelopment cycle [1–3]. Therefore, a code search tool with high
erformance is essential for developers.

However, it is extremely challenging to design a practically useful
ode search tool. Over the past few years, lots of code search methods
ased on information retrieval (IR) have been proposed [4–7], all
f which primarily focus on measuring the text similarity between
query and a code snippet. As a result, they ignored the semantic

elationship between the high-level description expressed by natural
anguage and low-level source code, which undoubtedly would affect
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the performance of code search [8,9]. For example, Fei et al. [7]
proposed CodeHow, which utilized an expanded Boolean model to
extract relations between descriptions and its relevant APIs. Rosf [10]
can extract the feature relation of the descriptions and code snippets by
combining the IR techniques and supervised learning. Unfortunately,
these studies failed to build a semantic bridge between code snippets
and descriptions. There are, of course, some methods that can take
advantage of the semantic relationship between the code snippet and
its description to some degree. For instance, FACoY [5] can capture
semantic information by query alternation strategy and recommends
code snippets that are similar to the inputting code snippet. Sirres
et al. [11] proposed an approach that can augment user queries by the
relevant but missing structural code entities. In our object, however, we
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only want to utilize natural language query to perform code search. The
user query of FACoY is a code snippet and Sirres et al. utilized relevant
code entities to enrich the user query.

Different from IR-based methods, deep learning technologies can
automatically learn feature representations and build mapping rela-
tionships between inputs and outputs [12,13]. In other words, deep
learning is very helpful for bridging the semantics gap between code
snippets and their descriptions. Under this consideration, Gu et al. [14]
constructed a model entirely using deep learning techniques, named
DeepCS1 (Deep Code Search). Specifically, DeepCS exploits two sepa-
rate LSTM (Long Short-Term Memory) [15,16] to embed code snippets
and their corresponding descriptions, mapping them into two different
vector spaces, respectively, and then aligns these two vector spaces by
a learned joint embedding model. After completing this step, the whole
model returns the most similar code snippet for every query inputted
by developers.

As the first code search model that uses deep learning, DeepCS
outperforms many traditional models such as Sourcerer [6] and Code-
How [7]. However, researchers observe that there is still room for the
improvement of DeepCS, both in the efficiency and effectiveness. There
are two reasons: (1) the execution efficiency of LSTM is slow because
of its special architecture [15], which is specifically described in Sec-
tion 2.4. (2) Code and natural language are data from different modal.
It is beneficial to embed them to the same vector space if we can build a
semantic relation between these different modal data before performing
the embedding operation. Therefore, Shuai et al. [17] proposed a code
search approach based on convolution neural network (CNN) and build
semantic relation of code-query via the co-attention mechanism. Li
et al. [18] proposed CQIL, a CNN-based code search model that can
build code-query correlation by hybrid representation. Observing these
two approaches, they all first represent code snippets and their queries
respectively, and then use an extra component to build the semantic
relationship between code snippets and their queries. Therefore, there
is an interesting question: as this extra component can build code-query
correlation, can we also directly use it to represent code snippets and
their queries?

Under the above consideration, we propose a self-attention joint
representation learning model named SAN-CS2 (Self-Attention Net-

orks for Code Search). Specifically, we directly use self-attention
etworks [19] to learn the contextual representation, separately for
ode snippets and their queries, due to the advantage that self-attention
etworks can capture global semantic relations (contextual informa-
ion) and have a high execution efficiency, which is introduced in
ections 3 and 2.4. Besides, inspired by Transformer [19] which uses
he encoder–decoder attention network to build semantic relations
etween source language sentences and target language sentences,
e further utilize a self-attention network to construct an extra joint

epresentation network, for building the semantic relationship between
ode snippets and their queries. By implementing this step, the code
ector can have a more deep-level semantic relation with the query
ector.

To evaluate the effectiveness of SAN-CS, we conduct a series of ex-
eriments on the public dataset [14] shared by Gu et al. and choose two
aseline model, DeepCS and CARLCS-CNN. The experimental results
ndicate that SAN-CS outperforms DeepCS and CARLCS-CNN under the
etric of MRR (0.908 vs. 0.568 and 0.535). In addition to it, SAN-CS

an run faster in the training and testing process than DeepCS.
To sum up, the major contributions of our work are as follows:

• We propose a new code search model based on self-attention net-
works, i.e., SAN-CS. This model can build semantic representation
for both code snippets and their queries through self-attention
networks and an joint representation network.

1 deep-code-search.
2 https://github.com/TomasAndersonFang/SANCS.
2

Fig. 1. An example of code snippet.

• We evaluate the effectiveness of SAN-CS on a large-scale public
dataset, and the experimental results demonstrate that it performs
better than DeepCS and CARLCS-CNN because we can effectively
build the semantic relations between code snippets and their
queries.

The remaining of this paper includes the following parts. Section 2
ntroduces the background of a deep learning-based code search and
ur motivation. Section 3 describes our proposed model in detail. Sec-
ion 4 presents the experimental setup and results. Section 5 discusses
hy our approach performs better and Section 6 introduces the related
orks. Finally, we conclude the paper and describe the future research
lans in Section 7.

. Background and motivation

In this section, we introduce the background of code search ap-
roaches that use deep learning technologies, mainly including how to
se neural networks to embed code snippets and their queries, as well
s how to evaluate the validity of a code search model in the real-world
cenario. In addition, we also introduce the motivation of our work.

.1. Word embedding

Word embedding [20,21], also called distributed representation of
ords, is an important Natural Language Processing (NLP) technique

hat uses a fixed-length dense vector to represent each word at high
imensional space. Compared with one-hot representation, distributed
epresentation is able to build semantic relations between different
ords by estimating their euclidean distance. Moreover, it is also the

ornerstone of sentence embedding and document embedding [22–24]
echniques.

A well-known word embedding tool is word2vec3 proposed by
oogle, which uses the CBOW (Continuous Bag-of-Words) or Skip-
ram model to embed words. Both models are built with a neural
etwork and trained with a large-scale text corpus to capture [20]
he semantic relationship between words based on distributed hypothe-
is [25]. In this paper, we use the CBOW model to embed words because
t has a shorter training time [20].

.2. Sequence embedding

A crucial step of code search is to transform the code snippets
nd queries to the code vectors and query vectors. By conducting this

3 https://github.com/danielfrg/word2vec.

https://github.com/guxd/deep-code-search
https://github.com/TomasAndersonFang/SANCS
https://github.com/danielfrg/word2vec


Information and Software Technology 134 (2021) 106542S. Fang et al.
Fig. 2. The basic structure of RNN, 𝑋𝑡 represents the word that is inputted into RNN,
ℎ𝑡 represents the hidden state of RNN.

step, we can calculate their semantic similarity. The specific embedding
processing is described as follows.

Code Sequence Embedding. Before conducting the code embedding,
we execute a pre-processing technique for each code snippet. As shown
in Fig. 1, every code snippet is divided into three parts: (1) method
name sequence, a list of tokens split by camel case; (2) API sequence,
a list of API words used in the code snippet; (3) tokens sequence,
a list of words used in the code snippet. Then we encode tokens in
those three components by the vocabulary with the top-n frequent
words that appeared in those three components, respectively. After
completing this step, we apply three individual word embedding layers
for those three components and transform them into three vectors
with the same embedding dimension. Finally, method name and API
vectors are further individually embedded through a neural network
based on the recurrent neural network (RNN) [26,27], the detailed
structure of which is shown in Fig. 2. In DeepCS, it uses the LSTM model
to embed method names and APIs vector because it can relieve the
gradient disappearing in RNN [15]. At the same time, tokens vectors are
further simply embedded via a common multi-layer perceptron (MLP),
e.g., a fully connected layer [28]. By completing this step, the whole
embedding process can be represented as follows:

𝑣𝑛𝑎𝑚𝑒 = 𝑒𝑚𝑏𝑒𝑑(𝑠𝑛𝑎𝑚𝑒), (1)

𝑣𝑎𝑝𝑖 = 𝑒𝑚𝑏𝑒𝑑(𝑠𝑎𝑝𝑖), (2)

𝑣𝑡𝑜𝑘𝑒𝑛 = 𝑒𝑚𝑏𝑒𝑑(𝑠𝑡𝑜𝑘𝑒𝑛), (3)

𝑣𝑐𝑜𝑑𝑒 = 𝐿𝑆𝑇𝑀1(𝑣𝑛𝑎𝑚𝑒) + 𝐿𝑆𝑇𝑀2(𝑣𝑎𝑝𝑖) +𝑀𝐿𝑃 (𝑣𝑡𝑜𝑘𝑒𝑛), (4)

where 𝑒𝑚𝑏𝑒𝑑(⋅) represents word embedding, 𝑠𝑛𝑎𝑚𝑒, 𝑠𝑎𝑝𝑖 and 𝑠𝑡𝑜𝑘𝑒𝑛 rep-
resent method name sequence, API sequence and tokens sequence,
respectively. Note that in CNN-based code search method, it uses CNN
instead of LSTM.

Query Sequence Embedding. Similar to the code sequence embed-
ding, for a query sequence shown, which consists of a list of English
words as shown in Fig. 1, We first encode it using the vocabulary (dif-
ferent from the vocabularies appeared in Code Sequence Embedding).
After completing this step, we apply the word embedding layer to the
query sequence and transform it into a query vector (𝑣𝑞) with the same
embedding dimension with the code vector. Finally, the query vector
is further embedded by the LSTM model. The whole process can be
represented as follows:

𝑣𝑞 = 𝑒𝑚𝑏𝑒𝑑(𝑠𝑞𝑢𝑒𝑟𝑦), (5)

𝑣𝑞𝑢𝑒𝑟𝑦 = 𝐿𝑆𝑇𝑀3(𝑣𝑞), (6)

where 𝑒𝑚𝑏𝑒𝑑(⋅) represents the word embedding, 𝑠𝑞𝑢𝑒𝑟𝑦 denotes the query
sequence, and 𝑣 denotes the final embedding output.
3

𝑞𝑢𝑒𝑟𝑦
2.3. Joint embedding

When finishing the code and query representation, we conduct a
joint embedding for them. Specifically, the joint embedding is achieved
by measuring the cosine similarity between the code vector and the
query vector.

𝑐𝑜𝑠(𝑣𝑐𝑜𝑑𝑒, 𝑣𝑞𝑢𝑒𝑟𝑦) =
𝑣𝑐𝑜𝑑𝑒 ⋅ 𝑣𝑞𝑢𝑒𝑟𝑦

‖𝑣𝑐𝑜𝑑𝑒‖ ⋅ ‖𝑣𝑞𝑢𝑒𝑟𝑦‖
. (7)

To get a good joint embedding model, for each given code vector
𝑣𝑐𝑜𝑑𝑒, we provide a positive query vector 𝑣+𝑞𝑢𝑒𝑟𝑦 and a negative query
vector 𝑣−𝑞𝑢𝑒𝑟𝑦 randomly chosen from the query dataset except 𝑣+𝑞𝑢𝑒𝑟𝑦. Our
goal is to maximize the similarity of 𝑣𝑐𝑜𝑑𝑒 and 𝑣+𝑞𝑢𝑒𝑟𝑦 and minimize the
similarity of 𝑣𝑐𝑜𝑑𝑒 and 𝑣−𝑞𝑢𝑒𝑟𝑦, thus we need to minimize the rank loss
function [29,30]:

𝐿(𝜃) = 𝑚𝑎𝑥(0, 𝜉 − 𝑐𝑜𝑠(𝑣𝑐𝑜𝑑𝑒, 𝑣+𝑞𝑢𝑒𝑟𝑦) + 𝑐𝑜𝑠(𝑣𝑐𝑜𝑑𝑒, 𝑣−𝑞𝑢𝑒𝑟𝑦)), (8)

where 𝜃 is the learnable model parameters, 𝜉 is a constant margin. In
order to train the aforementioned model well, Gu et al. [14] processed
about 18 million Java code methods from the open-source Java projects
on Github. In detail, for each Java code method, they chose the first line
of the documentation comment as the corresponding query. Moreover,
they also provided about 10k queries with their corresponding code
snippets to evaluate the performance of the model in the real-world
condition.

2.4. Motivation

The literature [1] has shown that during a software development
cycle, developers spend an average of 20% of their time in searching
for reusable code. Therefore, an efficient search engine can effectively
save developers’ time to develop high-quality software.

In contrast to LSTM, self-attention networks can better capture
global semantic information (contextual information) for each element
in the sequence as long as having better execution efficiency. Diving
into the internal of LSTM, we observe that the computation of the next
time step depends on the output of the previous time step. Therefore,
if the distance of two elements in a sequence is quite long (suppose
the distance is 𝑚), LSTM needs to transmit through 𝑚 times to build
the semantic relation between these two elements. Moreover, because
of such a sequential transmission mode, each element in a sequence
only can build the semantic relation with its left elements, which
means that LSTM only can extract limited contextual information for
each element in a sequence. From the perspective of efficiency, this
mode makes that LSTM cannot achieve parallel computing in GPUs
(Graphics Processing Units). Although CNN can better achieve parallel
computing, it is not suitable to encode sequence. The reason is that,
for each element, CNN only extracts local semantic information for
it because of the limited size of the convolution kernel. Therefore,
if we want to extract the global semantic information by CNN, we
need to stack CNN many times, which complicates our model. As for
the self-attention network, it is designed based on the self-attention
mechanism. In detail, when representing an element in a sequence,
the self-attention mechanism enables this element to pay attention
to all the elements in this sequence by a dot-product operation, and
then represent this element by the weighted average operation [19].
It illustrates that the self-attention mechanism not needs to consider
the distance factor. Therefore, the self-attention network can capture
contextual information for each element in the sequence. Considering
the execution efficiency, the sequential operation of the self-attention
mechanism is 𝑂(1), whereas the LSTM requires 𝑂(𝑛) sequential op-
erations [19]. In terms of computation complexity, the self-attention
layers are faster than the LSTM layers when the sequence length 𝑛 is
smaller than the representation dimensionality 𝑑 (in our experiments,
the max 𝑛 is 86 and the 𝑑 is 128) [19]. In addition, the self-attention
network can achieve parallel computation in the GPUs because the
core of self-attention networks is the dot-product operation. Therefore,
Transformer model [19], as the first model that is based solely on
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self-attention networks, has achieved state-of-the-art performance in
the machine translation task that requires a high degree of semantic
information, which demonstrates that the self-attention mechanism can
better capture the contextual information than LSTM and CNN.

Therefore, due to the capability of self-attention network in cap-
turing the contextual information, we directly adopt self-attention net-
works to construct code search model that can both achieve better
performance and faster execution efficiency.

3. Self-Attention Networks for Code Search

The models built with self-attention networks have achieved great
success in many NLP tasks [19,31–35]. Therefore inspired by them,
we try to apply self-attention networks to the code search task. In this
section, we introduce the architecture of our proposed model SAN-CS
in detail.

3.1. An overview of SAN-CS

Fig. 3 gives an overview of our proposed model SAN-CS. The input
of SAN-CS contains two parts, one is code snippets composed with the
method name, API, and tokens sequences, and another is the query
sequence. Then, these four sequences are embedded individually into
the corresponding code vector and query vector, where the code vector
is obtained by merging method name vector, API vector, and tokens
vector. Afterward, SAN-CS learns joint representations for the code
vector and query vector.

3.2. Code embedding

Each code snippet is composed of three elements: method name
sequence, API sequence, and tokens sequences. We utilize the following
four steps to obtain the final code vector.

3.2.1. Embedding for method name
For a given method name sequence, such as ‘‘openFile’’, we split

it into a sequence of words following the widely-adopted camel-case
naming convention.4 Different from API and tokens sequence, the
length of the method name sequence is very short (the max length
of the method name sequence is about 6), but it is a functionality
summarization for the whole code snippet, thus the model we used to
embed method sequence should have strong ability to extract semantic
information. In terms of the LSTM, we use the output of the last time
step in it to represent the entire information of a sentence. In our
view, we think it is not enough to represent a sentence by a fixed-
length vector with representation dimensionality 128 [12], and via
experiments, we also find that the LSTM tends to learn the feature of the
end of the sentence, which is not beneficial for representing the entire
sentence. Although method names are short, they concisely summarize
the functionality of the code snippet, and thus capture the methods’
semantic information. Compared with LSTM, the self-attention network
can pay attention to all the words in the sentence, and it can build
a contextual relationship for each word, therefore it is proficient to
extract semantic information and very suitable to embed the method
name sequence. Under the above consideration, we use self-attention
networks based on the self-attention mechanism rather than LSTM.

In detail, given a method name sequence 𝑆𝑛 = {𝑠1,… , 𝑠𝑖} of length
𝐼 , we suppose each word in the sequence has been embedded by the
word embedding layer with the same representation dimensionality 𝑑.
We first transform 𝑆𝑛 into the query vector 𝑄𝑛 ∈ R𝐼×𝑑 , the key vector

4 Camelcase, https://en.wikipedia.org/wiki/Camel_case.
4

t

𝐾𝑛 ∈ R𝐼×𝑑 , and the value vector 𝑉𝑛 ∈ R𝐼×𝑑 with three individual weight
metrics 𝑊𝑄 ∈ R𝑑×𝑑 , 𝑊𝐾 ∈ R𝑑×𝑑 , and 𝑊𝑉 ∈ R𝑑×𝑑 .

𝑄𝑛 = 𝑆𝑛 ⋅𝑊
𝑇
𝑄 , (9)

𝐾𝑛 = 𝑆𝑛 ⋅𝑊
𝑇
𝐾 , (10)

𝑉𝑛 = 𝑆𝑛 ⋅𝑊
𝑇
𝑉 . (11)

After completing the above step, we use the self-attention mech-
anism [24] to capture semantic information of the method name se-
quence. Specifically, it can be calculated as follows:

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛 = 𝐴𝑡𝑡(𝑄𝑛, 𝐾𝑛) ⋅ 𝑉𝑛, (12)

where Att(⋅) is a scaled dot-product attention model, which can be
defined by Eq. (13):

𝐴𝑡𝑡(𝑄𝑛, 𝐾𝑛) = SoftMax(𝑎𝑡𝑡𝑛), (13)

𝑎𝑡𝑡𝑛 =
𝑄𝑛 ⋅𝐾𝑇

𝑛
√

𝑑
, (14)

where
√

𝑑 is a temperature factor that can avoid gradient disappearing
f the model during the training phase, and it has the same represen-
ation dimensionality 𝑑. SoftMax(⋅) is a normalized function, which is
sed to get attention weight matrix.

When completing these steps, we can obtain the final output 𝑣𝑛𝑎𝑚𝑒 ∈
𝐼×𝑑 by applying 𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛 vector into a simple position-wise fully
onnected feed-forward network [19].

𝑛𝑎𝑚𝑒 = ReLu(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑛 ⋅𝑊1 + 𝑏1) ⋅𝑊2 + 𝑏2, (15)

here 𝑊1 ∈ R𝑑×4𝑑 , 𝑊2 ∈ R4𝑑×𝑑 , 𝑏1 ∈ R4𝑑 , and 𝑏2 ∈ R𝑑 are the learnable
arameters in the model, RelU(⋅) is the activation function [36].

.2.2. Embedding for API
Different from the method name sequence, most of API sequences

re much longer. Therefore, for the LSTM model, it is difficult to
apture long-distance dependency well [12,37], which means it cannot
ully capture semantic information from API sequences. As a result, it
ill hurt the performance of the code search model. As described in
ection 3.2.1, self-attention networks can resolve this problem. Besides,
ecause of the limitation of the structure in LSTM, it cannot achieve
arallel computing, therefore we need more time to train LSTM model.
s for the self-attention network, it can achieve parallel computing like
NN [38,39], thus we can fully use GPUs to train our model.

Similar to the method name sequence embedding, given an API
equence 𝑆𝑎 = {𝑠1,… , 𝑠𝑛} of length 𝑁 , we suppose each word in the
equence has been embedded by the word embedding layer with the
ame representation dimensionality 𝑑. We first transform 𝑆𝑎 into the
uery vector 𝑄𝑎 ∈ R𝑁×𝑑 , the key vector 𝐾𝑎 ∈ R𝑁×𝑑 , and the value
ector 𝑉𝑎 ∈ R𝑁×𝑑 , and then we utilize the self-attention mechanism to
apture semantic information of the API sequence. Finally, we obtain
he final output 𝑣𝑎𝑝𝑖 ∈ R𝑁×𝑑 by applying the output of the self-attention
etwork vector into a simple position-wise fully connected feed-forward
etwork.

𝑜𝑛𝑡𝑒𝑥𝑡𝑎 = SoftMax(
𝑄𝑎 ⋅𝐾𝑇

𝑎
√

𝑑
) ⋅ 𝑉𝑎, (16)

𝑣𝑎𝑝𝑖 = ReLu(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑎 ⋅𝑊1 + 𝑏1) ⋅𝑊2 + 𝑏2. (17)

.2.3. Embedding for tokens
Tokens sequence, extracted from the method body, is composed

f a list of words. Through data pre-processing phase, we find that
he tokens sequence only contains the informative keywords of the
ode snippets, which means locative relations between tokens are not
trong [14]. A simple example shows that although we exchange the
osition of two tokens (such as variable name), the function of the code
nippet is changeless. Although these tokens have weak location rela-
ions, they have enriched semantic information and relations. Because

https://en.wikipedia.org/wiki/Camel_case
https://en.wikipedia.org/wiki/Camel_case
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Fig. 3. An overview of SAN-CS.
of the above considerations, we think that just using a simple multi-
layer perceptron (MLP) is unable to build semantic relation for each
word [40], thus we choose the self-attention networks [19] instead
of the MLP to embed tokens sequence. The reason for this choice
is that the self-attention network can pay attention to all words in
the sentence without considering their locations through the weighted
average operation, thus it ignores the relative relation of words (for
other sequences embedding, we add an extra position encoding to
obtain positional information).

Specifically, given a tokens sequence 𝑆𝑡 = {𝑠1,… , 𝑠𝑚} of length 𝑀 ,
we suppose each word in the sequence has been embedded by the
word embedding layer with the same representation dimensionality
𝑑. We first transform 𝑆𝑡 into the query vector 𝑄𝑡 ∈ R𝑀×𝑑 , the key
vector 𝐾𝑡 ∈ R𝑀×𝑑 , and the value vector 𝑉𝑡 ∈ R𝑀×𝑑 , and then we
use the self-attention mechanism to capture semantic information of
the API sequence. Finally, we obtain the final output 𝑣𝑡𝑜𝑘𝑒𝑛 ∈ R𝑀×𝑑 by
applying the output of the self-attention network vector into a simple
position-wise fully connected feed-forward network.

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 = SoftMax(
𝑄𝑡 ⋅𝐾𝑇

𝑡
√

𝑑
) ⋅ 𝑉𝑡, (18)

𝑣𝑎𝑝𝑖 = ReLu(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 ⋅𝑊1 + 𝑏1) ⋅𝑊2 + 𝑏2. (19)

3.2.4. Embedding merging
When completing embedding for the method name sequence, API

sequence, and tokens sequence, we can gain code embedding 𝑉𝑐𝑜𝑑𝑒 ∈
R(𝐼+𝑁+𝑀)×𝑑 by simply concatenating 𝑣𝑛𝑎𝑚𝑒, 𝑣𝑎𝑝𝑖, and 𝑣𝑡𝑜𝑘𝑒𝑛.

𝑉𝑐𝑜𝑑𝑒 = 𝑐𝑜𝑛𝑐𝑎𝑡(𝑣𝑛𝑎𝑚𝑒, 𝑣𝑎𝑝𝑖, 𝑣𝑡𝑜𝑘𝑒𝑛). (20)

3.3. Description embedding

Code descriptions contain the semantic information that can directly
reflect the query purposes of the developers. Therefore, similar to the
code embedding, we also adopt the self-attention network to embed
the code description sequence. Given a code description sequence 𝑆𝑑 =
{𝑠1,… , 𝑠𝑗} of length 𝐽 , we suppose each word in the sequence has been
embedded by the word embedding layer with the same representation
dimensionality 𝑑. We first transform 𝑆𝑑 into the query vector 𝑄𝑑1 ∈
R𝐽×𝑑 , the key vector 𝐾𝑑1 ∈ R𝐽×𝑑 , and the value vector 𝑉𝑑1 ∈ R𝐽×𝑑 ,
and then we use the self-attention mechanism to capture semantic
information of the API sequence. Finally, we obtain the final output
𝑉𝑑𝑒𝑠𝑐 ∈ R𝐽×𝑑 by applying the output of the self-attention network vector
into a simple position-wise fully connected feed-forward network.

𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑡 = SoftMax(
𝑄𝑑1 ⋅𝐾𝑇

𝑑1
√

𝑑
) ⋅ 𝑉𝑑1, (21)

𝑉𝑑𝑒𝑠𝑐 = ReLu(𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑑 ⋅𝑊1 + 𝑏1) ⋅𝑊2 + 𝑏2. (22)
5

3.4. Code-description attention

When completing code embedding and its paired code description
embedding, we can collect < 𝑉𝑐𝑜𝑑𝑒 ∈ R𝐻×𝑑 , 𝑉𝑑𝑒𝑠𝑐 ∈ R𝐽×𝑑 > pairs. Here
𝐻 equals to 𝐼 + 𝑁 + 𝑀 . In order to map the ⟨𝑉𝑐𝑜𝑑𝑒, 𝑉𝑑𝑒𝑠𝑐⟩ pairs into
the same vector space better, we adopt an extra joint embedding for
them by the code-description attention network (a variant of the self-
attention network) before mapping them to the same vector space. In
detail, we first transform 𝑉𝑐𝑜𝑑𝑒 into the query vector 𝑄𝑐 ∈ R𝐻×𝑑 , and the
value vector 𝑉𝑐 ∈ R𝐽×𝑑 and transform 𝑉𝑑𝑒𝑠𝑐 into the keys 𝐾𝑑 ∈ R𝐽×𝑑 ,
and the values 𝑉𝑑 ∈ R𝐽×𝑑 with three corresponding weight metrics.

𝑄𝑐 = 𝑉𝑐𝑜𝑑𝑒 ⋅𝑊
𝑇
𝑞𝑐 , (23)

𝑉𝑐 = 𝑉𝑐𝑜𝑑𝑒 ⋅𝑊
𝑇
𝑣𝑐 , (24)

𝐾𝑑 = 𝑉𝑑𝑒𝑠𝑐 ⋅𝑊
𝑇
𝑘𝑑 , (25)

𝑉𝑑 = 𝑉𝑑𝑒𝑠𝑐 ⋅𝑊
𝑇
𝑣𝑑 . (26)

Then we compute code-description attention matrix A ∈ R𝐻×𝐽 as
follows:

𝐴 = 𝑆𝑜𝑓𝑡𝑀𝑎𝑥(
𝑄𝑐 ⋅𝐾𝑇

𝑑
√

𝑑
). (27)

The code-description attention matrix allows 𝑉𝑐𝑜𝑑𝑒 and 𝑉𝑑𝑒𝑠𝑐 to pay
attention to each other during the joint embedding phrase. And we can
represent the outputs of code-description attention network as follows,

𝒄 = 𝐴 ⋅ 𝑉𝑑 , (28)

𝒅 = 𝐴𝑇 ⋅ 𝑉𝑐 , (29)

where 𝒄 is 𝑉𝑐 joint embedding with 𝑉𝑑 , and 𝒅 is 𝑉𝑑 joint embedding
with 𝑉𝑐 .

Next, we conduct an average-pooling operation to 𝒄 and 𝒅 sepa-
rately to obtain semantic vectors 𝑪 ∈ R𝑑 and 𝑫 ∈ R𝑑 . Moreover,
in the experiment, we also find that max-pooling makes our model
invalid. One reasonable interpretation is that the self-attention network
builds a contextual vector for each word vector, and max-pooling only
captures the feature with the highest value, which significantly hurts
the semantic relationship between each word. The concrete definition
is as follows:

𝑪 = 𝑎𝑣𝑔𝑝𝑜𝑜𝑙𝑖𝑛𝑔([𝑐1,… , 𝑐ℎ]), (30)

𝑫 = 𝑎𝑣𝑔𝑝𝑜𝑜𝑙𝑖𝑛𝑔([𝑑1,… , 𝑑𝑗 ]). (31)

3.5. Training

Now we present the training details of SAN-CS model. To make SAN-
CS learn joint representation for code snippets and descriptions, we
hope that our model can make code and description vectors that have
similar semantics as close as possible in the vector space. In addition,
for a random code vector 𝒄, we also hope that our model can give a high
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similarity to its positive description, and give a low similarity to other
negative descriptions. Based on the above consideration, we achieve
our purpose by minimizing the rank loss during the training time.

𝐿(𝜃) =
∑

⟨𝑐,𝑑+ ,𝑑−⟩∈𝑇
𝑚𝑎𝑥(0, 𝜉 − 𝑐𝑜𝑠(𝒄,𝒅+) + 𝑐𝑜𝑠(𝒄,𝒅−)), (32)

where 𝜃 is the model parameters, 𝑇 is the dataset to train SAN-CS
model, and 𝑐𝑜𝑠(⋅) is used to compute the similarity. From the rank
loss function, we note that for each code vector 𝒄, there is a positive
description vector 𝒅+ and a negative description vector 𝒅−, and it
encourages 𝒄 and 𝒅+ to have a high similarity, and 𝒄 and 𝒅− to have a
low similarity. 𝜉 is a margin constant that avoids gradient disappearing.

At the training time, we utilize the Adam optimizer [41] to optimize
our rank loss function. SAN-CS model gets the basic representation
of code snippets and descriptions, and then those two representations
pass through a code-description attention network to generate a joint
representation for code snippets and descriptions, respectively. In the
back-propagation phase, the updated model parameters 𝜃 guide the
code-description attention network to generate joint representations of
code snippets and descriptions that can minimize the rank loss function.

3.6. Prediction

After completing the training phase, SAN-CS model has embedded
all code snippets and descriptions in the training dataset to the same
vector space. For a query from the developer, for instance, ‘‘close a
writer object’’, SAN-CS model first transforms the query into a query
vector 𝒒, and then the model calculates the semantic similarity between
𝒒 and each code vector 𝒄 in the vector space. Ultimately, the model
obtains the top-k code snippets related to the query and recommends
them to the developer.

4. Evaluation

4.1. Experimental setup

4.1.1. Research questions
Our work mainly focus on the following four research questions

(RQ):

RQ1:

Can our proposed model SAN-CS work well?

In RQ1, we mainly want to investigate whether SAN-CS model is
ore effective comparing to the code search model DeepCS [14] and
ARLCS-CNN [17]. If our experimental results can support SAN-CS, this

ndicates that the self-attention network is beneficial for code search.
RQ2:

Can SAN-CS get good performance in term of efficiency?

RQ2 aims at exploring the model efficiency. DeepCS can provide
ood search results, but it needs a huge amount of time in training and
as a long response time. Thus if SAN-CS has good performances in
erms of both effectiveness and efficiency, it will have more value in
ractice.

RQ3:

Can self-attention networks capture contextual information
better than LSTM and CNN?

As described in Sections 3.2 and 3.3, we exploit self-attention
etworks, instead of LSTM or CNN, to learn the representation for code
equences and description sequences, respectively. In Section 3.4, we
6

Table 1
Statistics of the dataset.
Dateset Size Language Time

Training 18.23M Java 2008.8-2016.6
Testing 10000 Java 2008.8-2016.6

use a self-attention network to built a joint representation network,
for adopting an extra joint representation to the code and description
vectors. The goal of making these choices is to capture the semantic
relations between the code and description vectors better. Therefore, in
this RQ, we want to explore whether those two self-attention networks
can make the model capture semantic information better.

RQ4:

How do different parameter settings of the self-attention net-
work, such as representation dimensionality 𝑑 and the number
of self-attention layers, affect the model effectiveness??

In SAN-CS, the size of representation dimensionality 𝑑 and the
number of the self-attention layers play an important role in the code
search effectiveness. To study what parameter settings are most suitable
for SAN-CS, we perform two groups of controlled experiments by using
the different representation dimensionality 𝑑 and different number of
the self-attention layer.

4.1.2. Dataset and baseline model
We conduct our experiments on the dataset released by Gu

et al. [14]. They had evaluated their code search model, DeepCS, on
this dataset. As shown in Table 1, the dataset for training is composed
of over 18 million public Java code methods collected from GitHub
repositories with at least one star, covering Aug. 2008 to Jun. 2016.
The dataset for testing contains 10K code-query pairs collected from
GitHub, and it can effectively alleviate the bias from the manual
evaluation. Some queries and code snippet examples are shown in
Table 2 and Fig. 4. By the way, to guarantee the fairness of subsequent
comparison experiments, we do not make any changes to this dataset.

Baseline: DeepCS [14]. It is the first and state-of-the-art model that
applies deep learning to the code search. To get the best performance of
DeepCS, we directly reuse the source code and the trained model, both
of which are shared by Gu et al. [14]. This can minimize the uncertainty
when evaluating.

Baseline: CARLCS-CNN [17]. A CNN-based code search model that
uses the co-attention to build the semantic relationship between code
snippets and their queries. To get the best performance of CARLCS-
CNN, we also directly reuse the source code opened by Shuai et al. [17].
In addition, we denote CARLCS-CNN as CARLCS for convenience.

Baseline: SAN-CS. Our proposed model is solely based on the self-
attention network, as detailed in Section 3. In our experiments, we
utilize the self-attention network with a single self-attention layer to
learn to represent the code snippets and their descriptions, and we also
set the size of parameter 𝑑 and word embedding to 128, the learning
rate as 10−4.

4.1.3. Evaluation metrics
We evaluate the effectiveness of SAN-CS using three different met-

rics: Recall, NDCG (Normalized Discounted Cumulative Gain), and
MRR (Mean Reciprocal Rank). Those metrics are widely used to es-
timate the code search and some relative tasks [7,42–45].

Recall@k. This metric aims at calculating the percent of queries
that are related to code methods and can be indexed in the top-k list.

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = 1
|𝑄|

|𝑄|

∑

𝜖(𝑄𝑖 <= 𝑘), (33)

𝑗=1
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Table 2
Some query examples in the testing dataset.
No. Description No. Description

1 Convert an asn 11 Close the proxy
2 Create a new file 12 Log the details of a file
3 Handle remote methods 13 Test if the file exist
4 Contain the data 14 Load the activities
5 Private constructor 15 Print out the classifier
6 Read the next line 16 Close a writer object
7 Return a string representation of this set 17 Convert a string to a char
8 Create an instance of jaxb element 18 Delete a folder on the hdfs
9 Get int property for activity 19 Converts a date into a calendar
10 Sort an int array into ascending order 20 Run an event on the thread queue
c

𝑀

Fig. 4. Two code snippets with queries in testing dataset.

here 𝑄 denotes the 10K queries in our testing dataset, 𝜎 is a detecting
unction that returns 1 if 𝑄𝑖 is in the top-k list, otherwise it returns 0.
n order to evaluate our proposed model comprehensively, we calculate
ecall@1, Recall@5, and Recall@10.

NDCG [46,47] hopes that search results in the top-k list are as
elevant as possible to the query, and also wants the more relevant
esult to be displayed in the front of the top-k list. We can calculate
t as follows,

𝐷𝐶𝐺 = 1
|𝑄|

𝑘
∑

𝑗=1

2𝑟𝑗 − 1
log2(1 + 𝑗)

, (34)

here 𝑄 denotes the 10K queries in our testing dataset, 𝑟𝑗 is relevant
earch results with position 𝑗 in the top-k search results, and 𝑘 denotes
he maximum value that NDCG can give the query. A code search model
ith a high NDCG score means that it not only has a high overall search
7

uality but also ranks the results that users need in the front position.
Table 3
Performance comparison of DeepCS, CARLCS, and SAN-CS. We use R@1/5/10 to
express Recall@1/5/10, and the same goes for the rest.

Model R@1 R@5 R@10 NDCG MRR

DeepCS 0.585 0.750 0.816 0.626 0.568
CARLCS 0.549 0.713 0.782 0.592 0.535
SAN-CS 0.931 0.956 0.962 0.921 0.908

MRR primarily finds the index of first relevant result. The MRR is
omputed as follow,

𝑅𝑅 = 1
|𝑄|

|𝑄|

∑

𝑗=1

1
𝐼𝑛𝑑𝑒𝑥𝑄𝑗

, (35)

where 𝑄 denotes 10K queries in the testing dataset; 𝐼𝑛𝑑𝑒𝑥𝑄𝑗
is the

index of the first search result related to the 𝑖th query (𝑄𝑗) in the top-k
rank list. If the top-k rank list has no search results related to 𝑄𝑗 , we
set the 1∕𝐼𝑛𝑑𝑒𝑥𝑄𝑗

equal to 0. The higher the MRR score, the shorter
code developers need to inspect to find their expected results, thus we
let the value of k equal to 10.

4.2. Results

4.2.1. RQ1: Model effectiveness
Table 3 shows the performance of the state-of-the-art model DeepCS

and our proposed SAN-CS under the different metrics. For the metric of
Recall@k, SAN-CS outperforms DeepCS and CARLCS by the average of
34.8% and 42.2%, respectively. For the metric of NDCG, SAN-CS model
advances DeepCS and CARLCS by 47.1% and 55.6%, respectively. As
for the metric of MRR, the scores of DeepCS and CARLCS are 0.568
and 0.535. SAN-CS obtains 59.9% and 69.7% improvement in terms
of MRR metric. All these results demonstrate that our proposed model
SAN-CS is more effective that DeepCS and CARLCS. Besides, we can
also observe that, although CNN has faster execution efficiency than
LSTM, LSTM is more suitable than CNN to encode the sequence.

Result1:

SAN-CS outperforms DeepCS and CARLCS in terms of Re-
call@k, NDCG, and MRR. This indicates that SAN-CS is more
effective for code search tasks.

4.2.2. RQ2: Model efficiency
In Table 4, we compare the total parameters, training time, and

searching time of two models on the dataset described in Section 4.1.2.
To compare model efficiency fairly, we train these two models un-
der the same experimental environment that a server with one Tesla
V100-SXM2 GPU with 32 GB video memory. The experimental results
demonstrate that, with the condition that SAN-CS has more parameters,
DeepCS takes about 1.0 ms to train every sample and 0.6 s to search for
each query, while SAN-CS only spends about 0.3 ms on training a single

sample and 0.1 s on responding to each code query. This indicates
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Table 4
Comparison of the efficiency of DeepCS and SAN-CS (The parameters
denote the total model parameters).
Model Parameters Training Searching

DeepCS 5.81M 1.0ms/sample 0.6s/query
SAN-CS 6.64M 0.3ms/sample 0.1s/query

Table 5
Comparison of the effects of the LSTM, CAELCS and SANs.

Model R@1 R@5 R@10 NDCG MRR

DeepCS 0.585 0.750 0.816 0.626 0.568
CARLCS 0.549 0.713 0.782 0.592 0.535
SAN-CS− 0.595 0.751 0.814 0.632 0.577
SAN-CS 0.931 0.956 0.962 0.921 0.908

that comparing with DeepCS, SAN-CS has a significant improvement
at execution efficiency, and also means SAN-CS is more suitable than
DeepCS in practice.

Result2:

Comparing with DeepCS, SAN-CS has a dramatic enhancement
in efficiency.

4.2.3. RQ3: The effect of self-attention network
In SAN-CS, self-attention networks and joint representation network

play a crucial role, which is described in Section 3. For the code and
description embedding, we directly exploit self-attention networks to
represent code snippets and their queries. To study whether each self-
attention network can improve representation effectiveness, we design
a variant of SAN-CS without using the joint representation network
(SAN-CS−) and compare it with DeepCS, CARLCS, and SAN-CS. There-
fore, if the self-attention network has a stronger representation learning
ability, SAN-CS and SAN-CS− should perform better than DeepCS and
CARLCS.

The results in Table 5 demonstrate that SAN-CS− obtains
Recall@1/5/10 scores of 0.595/0.751/0.814, an NDCG score of 0.632,
and an MRR score of 0.577, from which we observe that SAN-CS−
only has slight increases compared with DeepCS and CAELCS. These
experimental results not only support our idea that embedding the
code snippets and descriptions separately may cause the performance
bottleneck of the code search model but also illustrate that CNN is
not suitable to sequence modeling. When we supplement the joint
representation network to SAN-CS−, the results show that this network
has an extremely enhancement for SAN-CS− in terms of all evaluation
metrics, which shows that the joint representation learning is beneficial
to build semantic relation between the code vector and description
vector.

Result3:

Self-attention networks can capture contextual information
better than LSTM and CNN.

4.2.4. RQ4: The impact of parameters settings
As mentioned in Section 3, the efficiency of SAN-CS is affected by

the size of representation dimensionality 𝑑 and the number of the self-
attention layer. In Table 6, we perform three groups of experiments
with the different 𝑑, and the experimental results show that when we
set the representation dimensionality 𝑑 to 128, SAN-CS can get the best
performance. As for Table 7, we can observe that a single self-attention
layer is most suitable for SAN-CS if we take the total model parameters
into consideration, which is distinct from the Transformer [19] that
requires six self-attention layers for reaching the state-of-the-art results.
8

Table 6
Comparison of the effect of SAN-CS with different parameter 𝑑.
𝑑 R@1 R@5 R@10 NDCG MRR

64 0.921 0.954 0.958 0.912 0.901
128 0.931 0.956 0.962 0.921 0.908
256 0.919 0.952 0.960 0.910 0.894

Table 7
Comparison of the effect of SAN-CS with different number of the self-attention layers.

Layers R@1 R@5 R@10 NDCG MRR

1 0.931 0.954 0.958 0.912 0.908
2 0.921 0.955 0.961 0.912 0.896
3 0.642 0.800 0.866 0.679 0.622

Result4:

For SAN-CS, it is a good choice to set the representation
dimensionality 𝑑 to 128 when we choose a single self-attention
layer.

5. Discussion

5.1. Why does SAN-CS work well?

Although LSTM can capture long-range information in the sequence
via the gating mechanism [15,37,48], it is actually unable to fully
capture the semantic information of the sentences [12,49]. As for CNN,
it only extracts local semantic information for it because of the limited
size of the convolution kernel. Compared with LSTM and CNN, self-
attention networks can model global information with the weighted
averaging operation, which enables it to take into account all the
elements in an input sentence without considering their distances. The
code vector embedded by SAN-CS not only has abundant contextual
information, but also semantic relations between the modules (method
name sequence, API sequence, and token sequence), which is highly
conducive to establish the semantic connection with the description
vector and to better make joint embedding. This is why our proposed
model SAN-CS can perform better than DeepCS. Fig. 5 shows the first
search result of DeepCS and our proposed model for the query ‘‘set the
attribute value". Form Fig. 5(a) we can observe that DeepCS returns
an unrelated code snippet because its method name contains keyword
‘‘set" in the query, which means DeepCS cannot capture full semantic
information of the code snippet. In contrast, SAN-CS can return the
prospective code snippet, as shown in Fig. 5(b). An important reason
is that SAN-CS can embed code snippets into a vector containing
abundant semantic information, which enables code snippets to match
suitable queries at the semantic level.

5.2. Why does SAN-CS perform faster?

In the recurrent neural network and its variants [37,48], the compu-
tation of the next time step depends on the output of the previous time
step, which makes it impossible to conduct parallel computation in the
GPUs. In DeepCS, it mainly uses the LSTM model to embed sequences,
which makes it spend much more time on training and searching. As
introduced in Section 5.1, self-attention network considers all elements
in the sentence through the weighted average operation, which means
it can make parallel computation well in the GPUs.
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Fig. 5. The first search result of DeepCS and SAN-CS for the query ‘‘set the attribute
value".

5.3. Why did not we use topic model?

Topic models, such as latent dirichlet allocation (LDA) [50] and
latent semantic indexing (LSI) [51], can represent each word as a word
vector. However, topic models use co-occurrence relationships of words
in documents to cluster words by topic, to represent words with topic
information (high-level) [52], such coarse-grained word representation
is not suitable for the code search task because we need to recommend
appropriate code snippets for each inputted query rather than a topic.
In other words, we need fine-grained word representation (at both
syntactic and semantic levels) for the code search task. Apart from it,
the choice of topics in topic models entirely depends on the researchers,
and thus there are some subjective opinions on their choice.

As for language model [53,54], for example, the self-attention net-
work we use in SAN-CS, it first uses word2vec technique [20] to
represent each word as a word vector at the semantic and syntactic
levels and then uses the self-attention mechanism to further represent
each word vector as the word vector with contextual information,
finally, it can represent a sentence as a sequence vector by an av-
erage pooling operation to word vectors of this sentence and build
semantic relationship between the code snippet and its corresponding
description. Therefore, SAN-CS is able to recommend appropriate code
snippets for each inputted query. Although there are some topically
driven language models [55,56] that can achieve the same function, the
execution speed of these models is dramatically slow and these models
mainly focus on explaining the topics via the sentences generated by
language models.

5.4. Threats to validity

5.4.1. Internal threats
We believe that the internal threats to our proposed model fo-

cus on two aspects. The first one is the baseline re-implementation.
The experimental environment we use is different from DeepCS and
CARLCS-CNN’s, thus we implement and evaluate these two baseline
models on our server. However, if we replicate baseline models by
ourselves, its performance may have a certain degree of deviation.
To mitigate this threat, we re-ran DeepCS and CARLCS-CNN with the
source code and dataset shared by the authors. The second threat is the
9

model parameters. If a model has much more parameters than another
model, it is much possible to get better performance. We address this
threat by keeping our model parameters the same as DeepCS.

5.4.2. External threats
The external threat to this work is primarily in the generalization of

the proposed approach. While SAN-CS performs well in the test set, this
does not necessarily mean that it will perform equally well in enterprise
projects. We plan to build a more large-scale dataset and use it to
evaluate SAN-CS’s generalization ability.

6. Related work

6.1. Code search

In recent years, many works study on how to capture semantic
information of the code snippets and queries [4,57–62]. McMillan
et al. [63] tried to retrieve and visualize relevant functions and their
usages for each given query. Lv et al. [7] proposed CodeHow, which
can utilize a Boolean model to deeply understand the relationship
between the APIs and query. Li et al.. [42] proposed a relationship-
aware model named RACS, a JavaScript code search tool that can
use MCR graphs to capture the relationship of the features among the
called API methods. Although those traditional models tried to capture
semantic information of the code snippets or queries, they ignored that
the code snippets in a programming language and their corresponding
queries in natural language have semantic relationships. They only let
their model to understand code snippets or query, thus they failed to
build a bridge to break the semantic gap between the code snippets in
programming and query in natural language.

To break this semantic gap, Gu et al. [14] proposed the first deep
learning-based code search model called DeepCS. However, the oper-
ation that DeepCS uses two independent LSTM models to represent
the code snippets and queries individually isolates the semantic rela-
tionship between the code snippets and queries. Except for DeepCS,
Cambronero et al. [64] proposed UNIF, in which they added an atten-
tion mechanism [12] to LSTM to enforce the representation ability of
their model. Wan et al. [65] proposed MMAN that is based on tree-
LSTM and gated graph neural network. This model can extra consider
abstract syntax trees and control-flow graphs of the source code. Nguyen
t al. [66] proposed FuzzyCatch to recommend code for handling excep-
ion. Li et al. [18] proposed a CNN-based code search model that can
uild a semantic correlation between the code snippet and its query.
an et al. [67] performed an empirical study on code search and found

hat deep learning-based methods have good performance on code
earch via natural language queries. Besides, they also public a dataset
or code search task, named CosBench. Li et al. [18] proposed CQIL,

CNN-based code search model that first utilizes CNN to represent
ode snippets and their queries respectively, and then builds code-query
orrelation by hybrid representation. Ling et al. proposed AdaCS [68],
hich breaks down the learning process into the domain-specific words
nd matching general syntactic patterns, therefore it has excellent
eneralization capabilities. CodeMatcher [69] proposed by Liu et al.,

which mainly aims to reduce the complexity and time-consuming of
DeepCS by combining IR techniques with features in DeepCS. There are
some research studies similar to the code search task. For example, Lin
et al. [70] implemented a tool named CCDemon. This tool can boost the
developers’ efficiency by recommending where and how to modify their
pasted code. MICoDe, an Eclipse plugin constructed by Lin et al. [71],
allows developers to make customization for generating new code by
using suitable design templates in this tool. The inspiration of these
two works comes from the observation in process of development, the
insights from software engineering domain (worth utilizing in future
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study). Although SAN-CS is a deep learning-based code search model,
it can deeply extract the semantic relationship between code snippets
and their queries, which can help improve the performance of code
search.

Different from the above models that add attention mechanism to
LSTM or CNN, we directly utilize a kind of attention network, the self-
attention network, to construct our code search model, SANCS. To build
the semantic relation between code snippets and their queries, we extra
construct a joint representation network by using the self-attention
network. Therefore, SANCS first utilizes the self-attention networks to
represent code snippets and queries separately, and then further adopts
an extra joint representation for the code snippets and queries by the
joint representation network. For the self-attention networks, it can
capture semantics information better than LSTM and CNN; for the joint
representation network, it can build the internal relationship in the
code snippets and establish semantic relation between the code snippets
and descriptions.

6.2. Attention mechanism

Attention mechanism, a technology that simulates the process of
human reading and listening, can allow models learning to pay atten-
tion to crucial parts in data [12,33,72–74]. It brings a sea of energy
to computer vision and NLP. In the field of NLP, attention mechanism
is first used in the neural machine translation (NMT) by Bahdanau
et al. [12], which makes the NMT achieve great improvement. Wu
et al. [75] also utilized attention networks to construct the Google
Neural Machine Translation system. Rush et al. [76] proposed a neural
attention model to break the limitation of the text extraction-based
summarization model, which can generate words of the summary con-
ditioned on the input sentence. However, those models only apply
attention mechanisms into the RNN and its variants, they improve the
effectiveness of RNN models but cannot solve the limitation of structure
in RNN.

To address the above issues, Vaswani et al. [19] proposed the self-
attention mechanism, and the Transformermodel that is solely based
on self-attention networks, which obtained significant successes in all
kinds of NLP tasks, thus he led to the tendency of using self-attention
in the field of artificial intelligence. Zhang et al. [35] proposed a self-
attention generative adversarial network, which can generate details by
using cues from all feature locations. Yu et al. [34] proposed QANet for
reading comprehension, whose encoder uses local convolution and self-
attention to encode input sentences. Lee et al. [77] used self-attention
networks to generate a pre-trained biomedical language representation
model named BioBERT, which can understand complex biomedical
texts.

In our work, we fully apply the self-attention mechanism to the
code search field to alleviate the semantic gap between data from the
different modal. And our experimental results suggest that this attempt
is valuable for the code search.

7. Conclusion

In this paper, we proposed a self-attention network-based code
search model, named SAN-CS. Instead of using LSTM or CNN, we
first directly utilize self-attention networks to represent code snippets
and their queries, and then utilize a joint representation network to
conduct an extra joint representation for the code and query vectors.
By completing these steps, SAN-CS can learn a joint representation
both for code snippets and their queries. Our experimental results
demonstrate that SAN-CS outperforms DeepCS and CARLCS-CNN in
MRR metric. Moreover, SAN-CS has faster execution efficiency than
DeepCS. Therefore, self-attention networks and joint representation
learning are suitable for the deep learning-based code search methods.

Our future works mainly focus on two aspects. On the one hand, we
will try to explore the structure information of the code snippet, aiming
10
at combining it with the semantic information of the code snippet and
further improve the performance of our proposed model. On the other
hand, we plan to apply the self-attention network to other software
engineering tasks such as code summary, which also may benefit from
this more effective feature extraction network.
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